mobile water
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 24)

H-INDEX

17
(FIVE YEARS 0)

2021 ◽  
Vol 10 (14) ◽  
pp. e195101421764
Author(s):  
André Maciel Netto ◽  
Suzana Maria Gico Lima Montenegro ◽  
Ademir de Jesus Amaral

To model water flow and solute transport in soils, hydrodynamic and hydrodispersive parameters are required as input data in the mathematical models. This work aims to estimate the soil hydraulic and solute transport properties using a ponded axisymmetric infiltration experiment using a single-ring infiltrometer along with a conservative tracer (Cl-) in the field. Single ring infiltration experiments were accomplished on an Oxisol in Areia in the state of Paraíba, Brazil (6o 58' S, 35o 41' W, and 645 m), in a 50 x 50 m grid (16 points). The unsaturated hydraulic conductivity (K) and the sorptivity (S) were estimated for short or long time analysis of cumulative three-dimensional infiltration. The single tracer technique was used to calculate mobile water fraction (Ф) by measuring the solute concentration underneath the ring infiltrometer at the end of the infiltration. Two solute transfer numerical models based on the mobile-immobile water concept were used. The mobile water fraction (Ф), the dispersion coefficient (D), and the mass transfer coefficient (a) between mobile and immobile were estimated from both the measured infiltration depth and the Cl- concentration profile underneath the infiltrometer. The classical convection-dispersion (CD) and the mobile-immobile (MIM) models showed a good agreement between calculated and experimental values. However, the lowest standard errors to the fitted parameters were obtained by the CD model.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Wei Chen ◽  
Xiao Hao ◽  
Kui Yan ◽  
JianRong Lu ◽  
Jin Liu ◽  
...  

The increasingly serious water pollution problem makes efficient and information-based water quality monitoring equipment particularly important. To cover the shortcomings of existing water quality monitoring methods, in this paper, a mobile water quality monitoring system was designed based on LoRa communication and USV. In this system, the USV carrying water quality sensors was used as a platform. Firstly, the LoRa network is used to monitor water quality over a large area. Secondly, the unmanned surface vessel controls the position error within ±20 m and the velocity error within ±1 m/s based on the Kalman filter algorithm. Thirdly, the genetic algorithm based on improved crossover operators is used to determine the optimal operational path, which effectively improves the iterative efficiency of the classical genetic algorithm and avoids falling into local convergence. In the actual water surface test, its packet loss probability within a working range of 1.5 km was below 10%, and the USV could accurately navigate according to the preset optimal path. The test results proved that the system has a relatively large working range and high efficiency. This study is of high significance in water pollution prevention and ecological protection.


Author(s):  
Wei Yong ◽  
Yingfang Zhou

AbstractRoughness of surfaces significantly influences how methane and water flow in shale nanopores. We perform molecular dynamics simulations to investigate the influence of surface roughness on pore-scale transport of pure methane as well as of two-phase methane–water systems with the water sliding as droplets over the pore surface. For single-phase methane flow, surface roughness shows a limited influence on bulk methane density, while it significantly reduces the methane flow capacity. In methane–water systems, the mobility of water is a strong function of surface roughness including a clear transition between immobile and mobile water droplets. For cases with mobile water, droplet sliding speeds were correlated with pressure gradient and surface roughness. Sliding water droplets hardly deform, i.e., there is little difference between their advancing and receding contact angle with structured roughness.


2021 ◽  
Vol 25 (7) ◽  
pp. 3975-3989
Author(s):  
Ying Zhao ◽  
Li Wang

Abstract. Increasing numbers of field studies have detected isotopic mismatches between plant trunk water and its potential sources. However, the cause of these isotopic offsets is not clear, and it is uncertain whether they occur during root water uptake or during water transmission from root to trunk. Thus, we measured the specific isotopic composition (δ2H and δ18O) of each component (e.g. bulk soil water, mobile water, groundwater, trunk water and root water of Salix matsudana Koidz trees) in the soil–root–trunk continuum with a resolution of about 3 days. We report three main findings. First, we detected a clear separation between the isotopic compositions of mobile water and bulk soil water, but the distinction between mobile water and bulk soil water gradually decreased with increasing soil depth. Second, root water composition deviated from bulk soil water isotopic composition but overlapped with the composition derived for less mobile water. The maximum differences in δ2H and δ18O between bulk soil water and root water were −8.6 ‰ and −1.8 ‰, respectively. Third, trunk water was only isotopically similar to root water at 100–160 cm depths, and it remained stable during the experimental period, suggesting that the trees consistently used the stable deep water source. In conclusion, the isotopic offset between bulk soil water and trunk water of S. matsudana reflected an isotopic mismatch between root water and bulk soil water associated with the heterogeneity of the soil water. Our results illuminate relationships between the isotopic compositions of soil waters of various mobilities, root water and trunk water that may be useful for advancing our understanding of root water uptake and transport.


Author(s):  
Qingwen Ni ◽  
Anahi Tinajero ◽  
Daniel P. Nicolella

A NMR spin-spin (T2) relaxation technique has been described for determining the porosity, mobile and the bound water distribution in baboon cortical bone and correlate to their mechanical properties. The technique of low-field proton NMR involves spin-spin relaxation and free induction decay (FID) measurements, and the computational inversion methods for decay data analysis. The advantages of using NMR T2 relaxation techniques for bone water distribution are illustrated. The CPMG T2 relaxation data can be inverted to T2 relaxation distribution and this distribution then can be transformed to a pore size distribution with the longer relaxation times corresponding to larger pores. The FID T2 relaxation data can be inverted to T2 relaxation distribution and this distribution then can be transformed to bound and mobile water distribution with the longest relaxation time corresponding to mobile water and the middle relaxation time corresponding to bound water. The technique is applied to quantify apparent changes in porosity, bound and mobile water in cortical bone. Overall bone porosity is determined using the calibrated NMR fluid volume from the proton relaxation data divided by overall bone volume. The NMR porosity, bound and mobile water components are determined from cortical bone specimens obtained from baboon donors of different ages, and the results are correlated to bone mechanical properties.


Author(s):  
Christoph Stallkamp ◽  
Florian Diehlmann ◽  
Markus Lüttenberg ◽  
Marcus Wiens ◽  
Rebekka Volk ◽  
...  

Abstract A shortage of water leads to severe consequences for populations. Recent examples like the ongoing water shortage in Kapstadt or in Gloucestershire in 2007 highlight both the challenges authorities face to restore the water supply and the importance of installing efficient preparedness measures and plans. This study develops a proactive planning approach of emergency measures for possible impairments of water supply systems and validates this with a case study on water contamination in the city of Berlin. We formulate a capacitated maximal covering problem as a mixed-integer optimization model where we combine existing emergency infrastructure with the deployment of mobile water treatment systems. The model selects locations for mobile water treatment systems to maximize the public water supply within defined constraints. With the extension to a multi-objective decision making model, possible trade-offs between the water supply coverage and costs, and between the coverage of differently prioritized demand points are investigated. Therefore, decision makers benefit from a significantly increased transparency regarding potential outcomes of their decisions, leading to improved decisions before and during a crisis.


Sign in / Sign up

Export Citation Format

Share Document