scholarly journals Modified Cauchy Problem with Impulse Action for Parabolic Shilov Equations

Author(s):  
Galina Unguryan

For parabolic Shilov equations with continuous coefficients, the problem of finding classical solutions that satisfy a modified initial condition with generalized data such as the Gelfand and Shilov distributions is considered. This condition arises in the approximate solution of parabolic problems inverse in time. It linearly combines the meaning of the solution at the initial and some intermediate points in time. The conditions for the correct solvability of this problem are clarified and the formula for its solution is found. Using the results obtained, the corresponding problems with impulse action were solved.




2021 ◽  
pp. 1-23
Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo

The Rosenau–Korteweg-deVries–Kawahara equation describes the dynamics of dense discrete systems or small-amplitude gravity capillary waves on water of a finite depth. In this paper, we prove the well-posedness of the classical solutions for the Cauchy problem.



2020 ◽  
Vol 8 (2) ◽  
pp. 24-39
Author(s):  
V. Gorodetskiy ◽  
R. Kolisnyk ◽  
O. Martynyuk

Spaces of $S$ type, introduced by I.Gelfand and G.Shilov, as well as spaces of type $S'$, topologically conjugate with them, are natural sets of the initial data of the Cauchy problem for broad classes of equations with partial derivatives of finite and infinite orders, in which the solutions are integer functions over spatial variables. Functions from spaces of $S$ type on the real axis together with all their derivatives at $|x|\to \infty$ decrease faster than $\exp\{-a|x|^{1/\alpha}\}$, $\alpha > 0$, $a > 0$, $x\in \mathbb{R}$. The paper investigates a nonlocal multipoint by time problem for equations with partial derivatives of parabolic type in the case when the initial condition is given in a certain space of generalized functions of the ultradistribution type ($S'$ type). Moreover, results close to the Cauchy problem known in theory for such equations with an initial condition in the corresponding spaces of generalized functions of $S'$ type were obtained. The properties of the fundamental solution of a nonlocal multipoint by time problem are investigated, the correct solvability of the problem is proved, the image of the solution in the form of a convolution of the fundamental solution with the initial generalized function, which is an element of the space of generalized functions of $S'$ type.



1992 ◽  
Vol 5 (4) ◽  
pp. 363-373 ◽  
Author(s):  
L. Byszewski

The aim of the paper is to prove a theorem about the existence of an approximate solution to an abstract nonlinear nonlocal Cauchy problem in a Banach space. The right-hand side of the nonlocal condition belongs to a locally closed subset of a Banach space. The paper is a continuation of papers [1], [2] and generalizes some results from [3].



2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zenggui Wang

In this paper, we investigate the life-span of classical solutions to hyperbolic inverse mean curvature flow. Under the condition that the curve can be expressed in the form of a graph, we derive a hyperbolic Monge–Ampère equation which can be reduced to a quasilinear hyperbolic system in terms of Riemann invariants. By the theory on the local solution for the Cauchy problem of the quasilinear hyperbolic system, we discuss life-span of classical solutions to the Cauchy problem of hyperbolic inverse mean curvature.



2019 ◽  
Vol 16 (02) ◽  
pp. 223-243
Author(s):  
De-Xing Kong ◽  
Qi Liu ◽  
Chang-Ming Song

We investigate a dissipative hyperbolic geometry flow in two space variables for which a new nonlinear wave equation is derived. Based on an energy method, the global existence of solutions to the dissipative hyperbolic geometry flow is established. Furthermore, the scalar curvature of the metric remains uniformly bounded. Moreover, under suitable assumptions, we establish the global existence of classical solutions to the Cauchy problem, and we show that the solution and its derivative decay to zero as the time tends to infinity. In addition, the scalar curvature of the solution metric converges to the one of the flat metric at an algebraic rate.



Sign in / Sign up

Export Citation Format

Share Document