dynamic boundary
Recently Published Documents


TOTAL DOCUMENTS

442
(FIVE YEARS 106)

H-INDEX

30
(FIVE YEARS 5)

Mechanika ◽  
2021 ◽  
Vol 27 (6) ◽  
pp. 465-474
Author(s):  
Xu LI ◽  
Haiwen ZHANG ◽  
Dekui YUAN

Dynamic boundary condition (DBC) has been widely used in SPH method. However, in certain situations, it was found that a few fluid particles could break through the boundary or were not reflected specularly. Of course, these phenomena are unphysical. To improve the performance of DBC, an improved dynamic boundary condition (IDBC) was presented in this paper. To prevent fluid particles from breaking through the boundary, the repulsive force of boundary particles was enhanced by expanding the equation of state into a higher order. To deal with the asymmetry of DBC, a rectangular support domain attached to boundary particles and a corresponding correction factor are proposed. The results of three test cases showed that the performance of IDBC was satisfied.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kai Wang ◽  
Weiping Ding ◽  
Mingliang Yang ◽  
Qiao Zhu

AbstractTo improve the path tracking accuracy and yaw stability of distributed drive autonomous vehicles (DDAVs) under extreme working conditions, a cooperative lateral motion control method based on the dynamic boundary is proposed to prevent different road adhesion conditions from affecting the motion stability of DDAVs. Based on the analysis of the DDAV lateral dynamics system coordination mechanism, a dynamic boundary considering the pavement adhesion coefficient is proposed, and the Lateral Motion Synergistic Control System (LMSCS) is designed. The LMSCS is divided into the coordination, control, and executive layers. The coordination layer divides the control domain into the stable, quasi-stable, and unstable domains by the dynamic boundary, and coordinates the control strength of the path following control and yaw stability control. In the control layer, the path following control and yaw stability control laws are designed based on the global fast terminal sliding mode. The executive layer estimates the expected steering wheel angle and expected additional wheel torque. Joint simulations under double line shifting conditions confirmed that LMSCS reflects the impact of the road attachment conditions and improves the path tracking accuracy and vehicle yaw stability. The LMSCS has better overall performance than existing lateral motion control methods.


2021 ◽  
Vol 38 (1) ◽  
pp. 95-116
Author(s):  
MITROFAN M. CHOBAN ◽  
◽  
COSTICĂ N. MOROȘANU ◽  

The paper is concerned with a qualitative analysis for a nonlinear second-order boundary value problem, endowed with nonlinear and inhomogeneous dynamic boundary conditions, extending the types of bounday conditions already studied. Under certain assumptions on the input data: $f_{_1}(t,x)$, $w(t,x)$ and $u_0(x)$, we prove the well-posedness (the existence, a priori estimates, regularity and uniqueness) of a classical solution in the Sobolev space $W^{1,2}_p(Q)$. This extends previous works concerned with nonlinear dynamic boundary conditions, allowing to the present mathematical model to better approximate the real physical phenomena (the anisotropy effects, phase change in $\Omega$ and at the boundary $\partial\Omega$, etc.).


2021 ◽  
Vol 21 (21) ◽  
pp. 16531-16553
Author(s):  
Siqi Ma ◽  
Daniel Tong ◽  
Lok Lamsal ◽  
Julian Wang ◽  
Xuelei Zhang ◽  
...  

Abstract. Although air quality in the United States has improved remarkably in the past decades, ground-level ozone (O3) often rises in exceedance of the national ambient air quality standard in nonattainment areas, including the Long Island Sound (LIS) and its surrounding areas. Accurate prediction of high-ozone episodes is needed to assist government agencies and the public in mitigating harmful effects of air pollution. In this study, we have developed a suite of potential forecast improvements, including dynamic boundary conditions, rapid emission refresh and chemical data assimilation, in a 3 km resolution Community Multiscale Air Quality (CMAQ) modeling system. The purpose is to evaluate and assess the effectiveness of these forecasting techniques, individually or in combination, in improving forecast guidance for two major air pollutants: surface O3 and nitrogen dioxide (NO2). Experiments were conducted for a high-O3 episode (28–29 August 2018) during the Long Island Sound Tropospheric Ozone Study (LISTOS) field campaign, which provides abundant observations for evaluating model performance. The results show that these forecast system updates are useful in enhancing the capability of this 3 km forecasting model with varying effectiveness for different pollutants. For O3 prediction, the most significant improvement comes from the dynamic boundary conditions derived from the NOAA operational forecast system, National Air Quality Forecast Capability (NAQFC), which increases the correlation coefficient (R) from 0.81 to 0.93 and reduces the root mean square error (RMSE) from 14.97 to 8.22 ppbv, compared to that with the static boundary conditions (BCs). The NO2 from all high-resolution simulations outperforms that from the operational 12 km NAQFC simulation, regardless of the BCs used, highlighting the importance of spatially resolved emission and meteorology inputs for the prediction of short-lived pollutants. The effectiveness of improved initial concentrations through optimal interpolation (OI) is shown to be high in urban areas with high emission density. The influence of OI adjustment, however, is maintained for a longer period in rural areas, where emissions and chemical transformation make a smaller contribution to the O3 budget than that in high-emission areas. Following the assessment of individual updates, the forecasting system is configured with dynamic boundary conditions, optimal interpolation of initial concentrations and emission adjustment, to simulate a high-ozone episode during the 2018 LISTOS field campaign. The newly developed forecasting system significantly reduces the bias of surface NO2 prediction. When compared with the NASA Langley GeoCAPE Airborne Simulator (GCAS) vertical column density (VCD), this system is able to reproduce the NO2 VCD with a higher correlation (0.74), lower normalized mean bias (40 %) and normalized mean error (61 %) than NAQFC (0.57, 45 % and 76 %, respectively). The 3 km system captures magnitude and timing of surface O3 peaks and valleys better. In comparison with lidar, O3 profile variability of the vertical O3 is captured better by the new system (correlation coefficient of 0.71) than by NAQFC (correlation coefficient of 0.54). Although the experiments are limited to one pollution episode over the Long Island Sound, this study demonstrates feasible approaches to improve the predictability of high-O3 episodes in contemporary urban environments.


Sign in / Sign up

Export Citation Format

Share Document