scholarly journals An Integrated Genetic Algorithm and Homotopy Analysis Method to Solve Nonlinear Equation Systems

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hala A. Omar

Solving nonlinear equation systems for engineering applications is one of the broadest and most essential numerical studies. Several methods and combinations were developed to solve such problems by either finding their roots mathematically or formalizing such problems as an optimization task to obtain the optimal solution using a predetermined objective function. This paper proposes a new algorithm for solving square and nonsquare nonlinear systems combining the genetic algorithm (GA) and the homotopy analysis method (HAM). First, the GA is applied to find out the solution. If it is realized, the algorithm is terminated at this stage as the target solution is determined. Otherwise, the HAM is initiated based on the GA stage’s computed initial guess and linear operator. Moreover, the GA is utilized to calculate the optimum value of the convergence control parameter (h) algebraically without plotting the h-curves or identifying the valid region. Four test functions are examined in this paper to verify the proposed algorithm’s accuracy and efficiency. The results are compared to the Newton HAM (NHAM) and Newton homotopy differential equation (NHDE). The results corroborated the superiority of the proposed algorithm in solving nonlinear equation systems efficiently.

2011 ◽  
Vol 130-134 ◽  
pp. 3668-3671
Author(s):  
Xiu Rong Chen ◽  
Wen Shan Cui

In this paper, we apply homotopy analysis method to solve nonlinear equation and successfully obtain the bell-shaped solitary solution to the nonlinear equation. Comparison between our solution and the exact solution shows that homotopy analysis method is effective and valid for nonlinear problems.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Sandile Sydney Motsa ◽  
Precious Sibanda ◽  
Gerald T. Marewo ◽  
Stanford Shateyi

This paper presents the solution of the nonlinear equation that governs the flow of a viscous, incompressible fluid between two converging-diverging rigid walls using an improved homotopy analysis method. The results obtained by this new technique show that the improved homotopy analysis method converges much faster than both the homotopy analysis method and the optimal homotopy asymptotic method. This improved technique is observed to be much more accurate than these traditional homotopy methods.


2012 ◽  
Author(s):  
Li Zou ◽  
Wang Zhen ◽  
Zong Zhi ◽  
Tian Shoufu

2015 ◽  
Vol 10 (3) ◽  
pp. 2825-2833
Author(s):  
Achala Nargund ◽  
R Madhusudhan ◽  
S B Sathyanarayana

In this paper, Homotopy analysis method is applied to the nonlinear coupleddifferential equations of classical Boussinesq system. We have applied Homotopy analysis method (HAM) for the application problems in [1, 2, 3, 4]. We have also plotted Domb-Sykes plot for the region of convergence. We have applied Pade for the HAM series to identify the singularity and reflect it in the graph. The HAM is a analytical technique which is used to solve non-linear problems to generate a convergent series. HAM gives complete freedom to choose the initial approximation of the solution, it is the auxiliary parameter h which gives us a convenient way to guarantee the convergence of homotopy series solution. It seems that moreartificial degrees of freedom implies larger possibility to gain better approximations by HAM.


Sign in / Sign up

Export Citation Format

Share Document