initial approximation
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 76)

H-INDEX

11
(FIVE YEARS 3)

Author(s):  
María Laura Martínez

In this article, I provide an initial approximation to the establishment and the early stages of the history of science in Uruguay. To do so, I focus on the first courses on the subject dictated in Uruguay and the first figures—both local and foreign—that took part in the process. With this objective, first, I examine the introduction of the discipline into the Río de la Plata—and into Argentina more particularly—via the arrival of European historians. I then analyze the role played by some of the first most significant figures in the history of science in Uruguay in the second quarter of the twentieth century. Finally, I explore and briefly describe the first courses dictated at the Facultad de Humanidades y Ciencias (School of Humanities and Sciences) of the Universidad de la República (University of the Republic) during the mid-twentieth century.


2021 ◽  
Vol 11 (24) ◽  
pp. 12086
Author(s):  
Elena D’Amato ◽  
Constantino Carlos Reyes-Aldasoro ◽  
Arianna Consiglio ◽  
Gabriele D’Amato ◽  
Maria Felicia Faienza ◽  
...  

This work describes a non-invasive, automated software framework to discriminate between individuals with a genetic disorder, Pitt–Hopkins syndrome (PTHS), and healthy individuals through the identification of morphological facial features. The input data consist of frontal facial photographs in which faces are located using histograms of oriented gradients feature descriptors. Pre-processing steps include color normalization and enhancement, scaling down, rotation, and cropping of pictures to produce a series of images of faces with consistent dimensions. Sixty-eight facial landmarks are automatically located on each face through a cascade of regression functions learnt via gradient boosting to estimate the shape from an initial approximation. The intensities of a sparse set of pixels indexed relative to this initial estimate are used to determine the landmarks. A set of carefully selected geometric features, for example, the relative width of the mouth or angle of the nose, is extracted from the landmarks. The features are used to investigate the statistical differences between the two populations of PTHS and healthy controls. The methodology was tested on 71 individuals with PTHS and 55 healthy controls. The software was able to classify individuals with an accuracy rate of 91%, while pediatricians achieved a recognition rate of 74%. Two geometric features related to the nose and mouth showed significant statistical difference between the two populations.


Author(s):  
M.S. Konstantinov ◽  
I.A. Nikolichev ◽  
Aung Myo Thant

The paper describes a method developed for designing the trajectory of a spacecraft flight from the lunar surface to a given area of the Earth’s surface and analyzes a single-pulse flight scheme, in which the trajectory of a take-off lunar rocket is approximated by a single velocity pulse. The characteristics of the spacecraft entry into the Earth’s atmosphere are chosen so as to ensure that the conditions along the entry corridor during the ballistic entry are met and to ensure the landing of the reentry vehicle at a given point on the Earth’s surface. The criterion for optimizing the trajectory of the spacecraft return to the Earth is considered to be the value of the impulse that provides the spacecraft launch from the lunar surface. The method relies on the analysis of an auxiliary problem, the solution of which makes it possible to estimate the main properties of the investigated maneuver and find an initial approximation for the selected characteristics of the optimized trajectory.


2021 ◽  
Vol 43 (5) ◽  
pp. 219-231
Author(s):  
T. L. Mikheevа ◽  
O. P. Lapinа

Computer technology is presented to solve the inverse problem of magnetic field vector measurements using software and algorithmic support for an automated system to interpret potential fields. The technology includes constructing a numerical model of the magnetic field of the studied area, forming an initial approximation model, assessing the depth of the sources and their magnetization. An approximation structure is used to describe the sources of anomalies (a set of uniformly magnetized polygonal prisms). To solve the problem, we used real vector measurements of the magnetic field by the components Xа, Ya, Zа, Та in the sections of Gruzsko South and Gruzsko Severnaya. Geologically, the area belongs to the central part of the Ukrainian Shield — the Kirovograd tectonic megablock. The area of work is confined to the Subotsko-Moshorin latitudinal fault zone. The possibility of comparing the results of the interpretation of anomalies on each profile by the components of the anomalous magnetic field increases the reliability of the geological interpretation of magnetic prospecting data compared to the interpretation of modular surveys. The presence of vector measurements greatly facilitates the ability to determine the parameters of anomalous objects, which makes it possible to obtain more reliable solutions to the inverse problem. The use of vector information makes it possible to localize geological sources more successfully, thereby reducing the amount of work.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2966
Author(s):  
Petr Martyshko ◽  
Igor Ladovskii ◽  
Denis Byzov

The paper describes a method of gravity data inversion, which is based on parallel algorithms. The choice of the density model of the initial approximation and the set on which the solution is sought guarantees the stability of the algorithms. We offer a new upward and downward continuation algorithm for separating the effects of shallow and deep sources. Using separated field of layers, the density distribution is restored in a form of 3D grid. We use the iterative parallel algorithms for the downward continuation and restoration of the density values (by solving the inverse linear gravity problem). The algorithms are based on the ideas of local minimization; they do not require a nonlinear minimization; they are easier to implement and have better stability. We also suggest an optimization of the gravity field calculation, which speeds up the inversion. A practical example of interpretation is presented for the gravity data of the Urals region, Russia.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1475
Author(s):  
Marton Havasi ◽  
Jasper Snoek ◽  
Dustin Tran ◽  
Jonathan Gordon ◽  
José Miguel Hernández-Lobato

Variational inference is an optimization-based method for approximating the posterior distribution of the parameters in Bayesian probabilistic models. A key challenge of variational inference is to approximate the posterior with a distribution that is computationally tractable yet sufficiently expressive. We propose a novel method for generating samples from a highly flexible variational approximation. The method starts with a coarse initial approximation and generates samples by refining it in selected, local regions. This allows the samples to capture dependencies and multi-modality in the posterior, even when these are absent from the initial approximation. We demonstrate theoretically that our method always improves the quality of the approximation (as measured by the evidence lower bound). In experiments, our method consistently outperforms recent variational inference methods in terms of log-likelihood and ELBO across three example tasks: the Eight-Schools example (an inference task in a hierarchical model), training a ResNet-20 (Bayesian inference in a large neural network), and the Mushroom task (posterior sampling in a contextual bandit problem).


2021 ◽  
Vol 2094 (3) ◽  
pp. 032034
Author(s):  
A S Zuev ◽  
T E Smolentseva ◽  
R A Isaev

Abstract A hierarchical configuration procedure in the process of analyzing the functioning of organizational structures using algorithms for solving problems using discrete programming methods is considered in detail in this paper. On the basis of the research, the authors propose a methodology for the combined application of an initial approximation algorithm with certain properties and an algorithm for a recursive procedure for a directed search for the optimal hierarchy, which, in the future, solving the traveling salesman problem in a minimum time much more efficient than using the methods of dynamic programming of branches and boundaries.


2021 ◽  
Vol 16 (95) ◽  
pp. 82-98
Author(s):  
Dmitriy A. Karpov ◽  
◽  
Sergey S. Smirnov ◽  
Valery I. Struchenkov ◽  
◽  
...  

This article is a continuation of the article published in Journal of Applied Informatics nо.1 in 2019 [1]. In it, the problems of computer design of routes of various linear structures (new and reconstructed railways and highways, pipelines for various purposes, canals, etc.) are considered from a unified standpoint, as problems of approximating a sequence of points on plane of a smooth curve consisting of elements of a given type, i.e. spline. The fundamental difference from other approximation problems considered in the theory of splines and its applications is that the boundaries of the elements of the spline and even their number are unknown. Therefore, a two-stage scheme for finding a solution has been proposed. At the first stage, the number of spline elements and their parameters are determined using dynamic programming. For some tasks, this stage is the only one. In more complex cases, the result of the first stage is used as an initial approximation to optimize the spline parameters using nonlinear programming. Another complicating factor is the presence of numerous restrictions on the spline parameters, which take into account design standards and conditions for the construction and subsequent operation of the structure. The article discusses the features of mathematical models of the corresponding design problems. For a spline consisting of arcs of circles, mated by line segments, used in the design of the longitudinal profile of both new and reconstructed railways and highways and pipelines, a mathematical model is built and a new algorithm for solving a nonlinear programming problem is proposed, taking into account the structural features of the constraint system. In contrast to standard nonlinear programming algorithms, a basis is constructed in the zero-space of the matrix of active constraints and its modification is used when the set of active constraints changes. At the same time, to find the direction of descent at each iteration, no solution of auxiliary systems of equations is required at all. Two options for organizing the iterative optimization process are considered: descent through groups of variables in the presence of sections for independent construction of the descent direction and the traditional change of all variables in one iteration. Experimentally, no significant advantage of one of these options has been revealed.


2021 ◽  
Vol 7 (3) ◽  
pp. 239-244
Author(s):  
Konstantin Yu. Khromov ◽  
Andrey V. Orlov ◽  
Ivan A. Belov ◽  
Vladimir A. Nevinitsa

Quantum-mechanical methods are used to assess the energy barriers to dissociation and recombination reactions of UF6 ↔ UF5 + F and UF6 ↔ UF4 + F2. The energy characteristics of these reactions are found to be strongly asymmetric: the dissociation reaction barriers exceed the recombination reactions barriers by more than 4 eV. The equilibrium atomic configurations of F2, UF4, UF5 and UF6 have been determined using precision quantum mechanical calculations. The U-F bond lengths obtained as a result of the calculations are in good agreement with experimental data. It was found that the decay reaction UF6 → UF5 + F is either barrier-free, or the energy barrier for such a reaction is less than the resolving power of the method (~ 0.1 eV). For the decay of UF6 → UF4 + F2, there is an energy barrier with a height of about 0.3 eV. An initial approximation was proposed for the arrangement of UF6 atoms in order to find the saddle points of the UF6 dissociation reactions. In this initial configuration, all 7 atoms of the UF6 molecule are located in the same plane. The F atoms are located at the vertices of a regular hexagon, and the U atom is at the center of such a hexagon. The results of this work can be used to determine the constants of thermal reactions of dissociation and recombination UF6 ↔ UF5 + F и UF6 ↔ UF4 + F2. These constants are necessary for modeling the physicochemical processes occurring during the enrichment of spent nuclear fuel (SNF).


2021 ◽  
Vol 42 (II) ◽  
pp. 92-98
Author(s):  
M. FYS ◽  
◽  
V. HLOTOV ◽  
A. HUNINA ◽  
M. PROTSYK ◽  
...  

One of the problems with the use of UAVs for high-precision mapping is the inability to install on these devices an accurate stabilization system to determine the angular EEO images, so there is a need to develop methods for accurate location of EEO. To date, there are many developments in the definition of elements of EEO. However, there are a number of issues in their practical implementation. This applies primarily to attempts to improve the accuracy of obtaining the coordinates of the points of objects on the ground. Aim. Investigate the possibility of the proposed algorithm for determining the elements of EEO of digital images obtained by aerial surveying from an UAV. Methodology. Based on the condition of collinearity, two types of functions are determined for which the minimum is searched. This process of determining the elements of the EEO is performed using software. A diverse set of programs makes it possible to implement such a search, and a reasonable initial approximation of the EEA and provides a definition of their optimal parameters [Hlotov, 2020; Zavarzin, 2013; Berezina, 2018; Kim Hon Ir, 2017]. Results. The proposed approach was tested on the corresponding digital images obtained by aerial surveying from UAVs at checkpoints, which made it possible to justify the effectiveness of the proposed method. The specified RMSE had the following values: = 0.15 m, = 0.18 m, = 0.40 m. After specifying the steel error = 0.06 m, = 0.03 m, = 0.25 m. The analysis of the unknown results confirms the improvement of the accuracy of coordinate determination by specifying the values of RMS relative to those obtained in the software package Models and the proposed algorithm. Scientific novelty and practical significance. An algorithm has been developed that makes it possible to determine the value of EEO using software without the use of special software for digital image processing. First of all, it makes it possible to improve the accuracy of EEO determination for digital images obtained from UAVs and allows to significantly expand the range of tasks using UAVs.


Sign in / Sign up

Export Citation Format

Share Document