HOMOTOPY ANALYSIS METHOD TO SOLVE BOUSSINESQ EQUATIONS

2015 ◽  
Vol 10 (3) ◽  
pp. 2825-2833
Author(s):  
Achala Nargund ◽  
R Madhusudhan ◽  
S B Sathyanarayana

In this paper, Homotopy analysis method is applied to the nonlinear coupleddifferential equations of classical Boussinesq system. We have applied Homotopy analysis method (HAM) for the application problems in [1, 2, 3, 4]. We have also plotted Domb-Sykes plot for the region of convergence. We have applied Pade for the HAM series to identify the singularity and reflect it in the graph. The HAM is a analytical technique which is used to solve non-linear problems to generate a convergent series. HAM gives complete freedom to choose the initial approximation of the solution, it is the auxiliary parameter h which gives us a convenient way to guarantee the convergence of homotopy series solution. It seems that moreartificial degrees of freedom implies larger possibility to gain better approximations by HAM.

2015 ◽  
Vol 08 (04) ◽  
pp. 1550050 ◽  
Author(s):  
Navid Freidoonimehr ◽  
Behnam Rostami ◽  
Mohammad Mehdi Rashidi

In this paper a definitely new analytical technique, predictor homotopy analysis method (PHAM), is employed to solve the problem of two-dimensional nanofluid flow through expanding or contracting gaps with permeable walls. Moreover, comparison of the PHAM results with numerical results obtained by the shooting method coupled with a Runge–Kutta integration method as well as previously published study results demonstrates high accuracy for this technique. The fluid in the channel is water containing different nanoparticles: silver, copper, copper oxide, titanium oxide, and aluminum oxide. The effects of the nanoparticle volume fraction, Reynolds number, wall expansion ratio, and different types of nanoparticles on the flow are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Shahid S. Siddiqi ◽  
Muzammal Iftikhar

The aim of this paper is to use the homotopy analysis method (HAM), an approximating technique for solving linear and nonlinear higher order boundary value problems. Using HAM, approximate solutions of seventh-, eighth-, and tenth-order boundary value problems are developed. This approach provides the solution in terms of a convergent series. Approximate results are given for several examples to illustrate the implementation and accuracy of the method. The results obtained from this method are compared with the exact solutions and other methods (Akram and Rehman (2013), Farajeyan and Maleki (2012), Geng and Li (2009), Golbabai and Javidi (2007), He (2007), Inc and Evans (2004), Lamnii et al. (2008), Siddiqi and Akram (2007), Siddiqi et al. (2012), Siddiqi et al. (2009), Siddiqi and Iftikhar (2013), Siddiqi and Twizell (1996), Siddiqi and Twizell (1998), Torvattanabun and Koonprasert (2010), and Kasi Viswanadham and Raju (2012)) revealing that the present method is more accurate.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Hadi Hosseini Fadravi ◽  
Hassan Saberi Nik ◽  
Reza Buzhabadi

The analytical solution of the foam drainage equation with time- and space-fractional derivatives was derived by means of the homotopy analysis method (HAM). The fractional derivatives are described in the Caputo sense. Some examples are given and comparisons are made; the comparisons show that the homotopy analysis method is very effective and convenient. By choosing different values of the parameters in general formal numerical solutions, as a result, a very rapidly convergent series solution is obtained.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Ahmad El-Ajou ◽  
Omar Abu Arqub ◽  
Shaher Momani

In this paper, series solution of second-order integrodifferential equations with boundary conditions of the Fredholm and Volterra types by means of the homotopy analysis method is considered. The new approach provides the solution in the form of a rapidly convergent series with easily computable components using symbolic computation software. The homotopy analysis method provides us with a simple way to adjust and control the convergence region of the infinite series solution by introducing an auxiliary parameter. The proposed technique is applied to a few test examples to illustrate the accuracy, efficiency, and applicability of the method. The results reveal that the method is very effective, straightforward, and simple.


1998 ◽  
Vol 65 (4) ◽  
pp. 914-922 ◽  
Author(s):  
Shi-Jun Liao ◽  
A. T. Chwang

In this paper, we apply a new analytical technique for nonlinear problems, namely the Homotopy Analysis Method (Liao 1992a), to give two-period formulas for oscillations of conservative single-degree-of-freedom systems with odd nonlinearity. These two formulas are uniformly valid for any possible amplitudes of oscillation. Four examples are given to illustrate the validity of the two formulas. This paper also demonstrates the general validity and the great potential of the Homotopy Analysis Method.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Sohrab Effati ◽  
Hassan Saberi Nik ◽  
Reza Buzhabadi

The homotopy analysis method (HAM) is employed to obtain symbolic approximate solutions for nonlinear coupled equations with parameters derivative. These nonlinear coupled equations with parameters derivative contain many important mathematical physics equations and reaction diffusion equations. By choosing different values of the parameters in general formal numerical solutions, as a result, a very rapidly convergent series solution is obtained. The efficiency and accuracy of the method are verified by using two famous examples: coupled Burgers and mKdV equations. The obtained results show that the homotopy perturbation method is a special case of homotopy analysis method.


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Fadi Awawdeh ◽  
Ahmad Adawi ◽  
Safwan Al-Shara'

We apply the homotopy analysis method (HAM) for solving the multipantograph equation. The analytical results have been obtained in terms of convergent series with easily computable components. Several examples are given to illustrate the efficiency and implementation of the homotopy analysis method. Comparisons are made to confirm the reliability of the homotopy analysis method.


Sign in / Sign up

Export Citation Format

Share Document