Investigation of General Power Sum-Connectivity Index for Some Classes of Extremal Graphs
In this work, we introduce a new topological index called a general power sum-connectivity index and we discuss this graph invariant for some classes of extremal graphs. This index is defined by Y α G = ∑ u v ∈ E G d u d u + d v d v α , where d u and d v represent the degree of vertices u and v , respectively, and α ≥ 1 . A connected graph G is called a k -generalized quasi-tree if there exists a subset V k ⊂ V G of cardinality k such that the graph G − V k is a tree but for any subset V k − 1 ⊂ V G of cardinality k − 1 , the graph G − V k − 1 is not a tree. In this work, we find a sharp lower and some sharp upper bounds for this new sum-connectivity index.