scholarly journals Investigation of General Power Sum-Connectivity Index for Some Classes of Extremal Graphs

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Rui Cheng ◽  
Gohar Ali ◽  
Gul Rahmat ◽  
Muhammad Yasin Khan ◽  
Andrea Semanicova-Fenovcikova ◽  
...  

In this work, we introduce a new topological index called a general power sum-connectivity index and we discuss this graph invariant for some classes of extremal graphs. This index is defined by Y α G = ∑ u v ∈ E G d u d u + d v d v α , where d u and d v represent the degree of vertices u and v , respectively, and α ≥ 1 . A connected graph G is called a k -generalized quasi-tree if there exists a subset V k ⊂ V G of cardinality k such that the graph G − V k is a tree but for any subset V k − 1 ⊂ V G of cardinality k − 1 , the graph G − V k − 1 is not a tree. In this work, we find a sharp lower and some sharp upper bounds for this new sum-connectivity index.

Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 324 ◽  
Author(s):  
Shaohui Wang ◽  
Zehui Shao ◽  
Jia-Bao Liu ◽  
Bing Wei

The Padmakar–Ivan ( P I ) index is a distance-based topological index and a molecular structure descriptor, which is the sum of the number of vertices over all edges u v of a graph such that these vertices are not equidistant from u and v. In this paper, we explore the results of P I -indices from trees to recursively clustered trees, the k-trees. Exact sharp upper bounds of PI indices on k-trees are obtained by the recursive relationships, and the corresponding extremal graphs are given. In addition, we determine the P I -values on some classes of k-trees and compare them, and our results extend and enrich some known conclusions.


Filomat ◽  
2012 ◽  
Vol 26 (4) ◽  
pp. 733-738 ◽  
Author(s):  
Kinkar Das ◽  
Ivan Gutman ◽  
Boris Furtula

The atom-bond connectivity index (ABC) is a vertex-degree based graph invariant, put forward in the 1990s, having applications in chemistry. Let G = (V,E) be a graph, di the degree of its vertex i, and ij the edge connecting the vertices i and j. Then ABC = ?ij?E ?(di+dj?2)/(didj). Upper bounds and Nordhaus-Gaddum type results for ABC are established.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Muhammad Asif ◽  
Hamad Almohamedh ◽  
Muhammad Hussain ◽  
Khalid M Alhamed ◽  
Abdulrazaq A. Almutairi ◽  
...  

Graph theory is a dynamic tool for designing and modeling of an interconnection system by a graph. The vertices of such graph are processor nodes and edges are the connections between these processors nodes. The topology of a system decides its best use. Geometric-arithmetic index is one of the most studied graph invariant to characterize the topological aspects of underlying interconnection networks or graphs. Transformation over graph is also an important tool to define new network of their own choice in computer science. In this work, we discuss transformed family of graphs. Let Γ n k , l be the connected graph comprises by k number of pendent path attached with fully connected vertices of the n-vertex connected graph Γ . Let A α Γ n k , l and A α β Γ n k , l be the transformed graphs under the fact of transformations A α and A α β , 0 ≤ α ≤ l , 0 ≤ β ≤ k − 1 , respectively. In this work, we obtained new inequalities for the graph family Γ n k , l and transformed graphs A α Γ n k , l and A α β Γ n k , l which involve GA Γ . The presence of GA Γ makes the inequalities more general than all those which were previously defined for the GA index. Furthermore, we characterize extremal graphs which make the inequalities tight.


2021 ◽  
Vol 7 (1) ◽  
pp. 651-666
Author(s):  
Hongzhuan Wang ◽  
◽  
Xianhao Shi ◽  
Ber-Lin Yu

<abstract><p>The well-studied eccentric connectivity index directly consider the contribution of all edges in a graph. By considering the total eccentricity sum of all non-adjacent vertex, Hua et al. proposed a new topological index, namely, eccentric connectivity coindex of a connected graph. The eccentric connectivity coindex of a connected graph $ G $ is defined as</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \overline{\xi}^{c}(G) = \sum\limits_{uv\notin E(G)} (\varepsilon_{G}(u)+\varepsilon_{G}(v)). $\end{document} </tex-math></disp-formula></p> <p>Where $ \varepsilon_{G}(u) $ (resp. $ \varepsilon_{G}(v) $) is the eccentricity of the vertex $ u $ (resp. $ v $). In this paper, some extremal problems on the $ \overline{\xi}^{c} $ of graphs with given parameters are considered. We present the sharp lower bounds on $ \overline{\xi}^{c} $ for general connecteds graphs. We determine the smallest eccentric connectivity coindex of cacti of given order and cycles. Also, we characterize the graph with minimum and maximum eccentric connectivity coindex among all the trees with given order and diameter. Additionally, we determine the smallest eccentric connectivity coindex of unicyclic graphs with given order and diameter and the corresponding extremal graph is characterized as well.</p></abstract>


Filomat ◽  
2018 ◽  
Vol 32 (1) ◽  
pp. 311-317 ◽  
Author(s):  
Marjan Matejic ◽  
Igor Milovanovic ◽  
Emina Milovanovic

Let G=(V,E), V = {1,2,..., n}, E = {e1,e2,..., em}, be a simple graph with n vertices and m edges. Denote by d1 ? d2 ?... ? dn > 0 and d(e1) ? d(e2) ?... ? d(em), sequences of vertex and edge degrees, respectively. If i-th and j-th vertices of the graph G are adjacent, it is denoted as i ~ j. Graph invariant referred to as harmonic index is defined as H(G)= ? i~j 2/di+dj. Lower and upper bounds for invariant H(G) are obtained.


Filomat ◽  
2016 ◽  
Vol 30 (8) ◽  
pp. 2217-2231
Author(s):  
Guifu Su ◽  
Liming Xiong ◽  
Ivan Gutman ◽  
Lan Xu

We investigate a new graph invariant named reciprocal product-degree distance, defined as: RDD* = ?{u,v}?V(G)u?v deg(u)?deg(v)/dist(u,v) where deg(v) is the degree of the vertex v, and dist(u,v) is the distance between the vertices u and v in the underlying graph. RDD* is a product-degree modification of the Harary index. We determine the connected graph of given order with maximum RDD*-value, and establish lower and upper bounds for RDD*. Also a Nordhaus-Gaddum-type relation for RDD* is obtained.


Author(s):  
A. Alhevaz ◽  
M. Baghipur ◽  
H. A. Ganie ◽  
K. C. Das

Let [Formula: see text] be a connected graph of order [Formula: see text] and let [Formula: see text] be the reciprocal distance matrix (also called Harary matrix) of the graph [Formula: see text]. Let [Formula: see text] be the eigenvalues of the reciprocal distance matrix [Formula: see text] of the connected graph [Formula: see text] called the reciprocal distance eigenvalues of [Formula: see text]. The Harary energy [Formula: see text] of a connected graph [Formula: see text] is defined as sum of the absolute values of the reciprocal distance eigenvalues of [Formula: see text], that is, [Formula: see text] In this paper, we establish some new lower and upper bounds for [Formula: see text] in terms of different graph parameters associated with the structure of the graph [Formula: see text]. We characterize the extremal graphs attaining these bounds. We also obtain a relation between the Harary energy and the sum of [Formula: see text] largest adjacency eigenvalues of a connected graph.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2015 ◽  
Vol 26 (03) ◽  
pp. 367-380 ◽  
Author(s):  
Xingqin Qi ◽  
Edgar Fuller ◽  
Rong Luo ◽  
Guodong Guo ◽  
Cunquan Zhang

In spectral graph theory, the Laplacian energy of undirected graphs has been studied extensively. However, there has been little work yet for digraphs. Recently, Perera and Mizoguchi (2010) introduced the directed Laplacian matrix [Formula: see text] and directed Laplacian energy [Formula: see text] using the second spectral moment of [Formula: see text] for a digraph [Formula: see text] with [Formula: see text] vertices, where [Formula: see text] is the diagonal out-degree matrix, and [Formula: see text] with [Formula: see text] whenever there is an arc [Formula: see text] from the vertex [Formula: see text] to the vertex [Formula: see text] and 0 otherwise. They studied the directed Laplacian energies of two special families of digraphs (simple digraphs and symmetric digraphs). In this paper, we extend the study of Laplacian energy for digraphs which allow both simple and symmetric arcs. We present lower and upper bounds for the Laplacian energy for such digraphs and also characterize the extremal graphs that attain the lower and upper bounds. We also present a polynomial algorithm to find an optimal orientation of a simple undirected graph such that the resulting oriented graph has the minimum Laplacian energy among all orientations. This solves an open problem proposed by Perera and Mizoguchi at 2010.


Author(s):  
R. Khoeilar ◽  
A. Jahanbani ◽  
L. Shahbazi ◽  
J. Rodríguez

The [Formula: see text]-index of a graph [Formula: see text], denoted by [Formula: see text], is defined as the sum of weights [Formula: see text] over all edges [Formula: see text] of [Formula: see text], where [Formula: see text] denotes the degree of a vertex [Formula: see text]. In this paper, we give sharp upper bounds of the [Formula: see text]-index (forgotten topological index) over bicyclic graphs, in terms of the order and maximum degree.


Sign in / Sign up

Export Citation Format

Share Document