Histone deacetylase (HDAC) enzymes modify the histone by removing the acetyl group from the lysine residues, known as histone deacetylation. HDACs have been involved in altering gene expressions, resulting in cancer cells in the body. This study focuses on HDAC inhibitors’ impact on histone deacetylase-like protein (HDLP) stability through computational techniques. Molecular dynamics (MD) analyses were used to examine the atomic-level description of drug binding sites and how the HDAC inhibitors change the HDLP enzyme environment. In this study, two hydroxamic acid-derived inhibitors, such as [Formula: see text]-Carboxycinnamic acid bis-hydroxamide (CBHA) and scriptaid (GCK1026), were selected to examine the inhibition ability in terms with suberanilohydroxamic acid (SAHA) as a reference drug. The crystal structure of the HDLP was downloaded from the Protein Data Bank. The structures of inhibitors were optimized using the G09W package. Docking studies were done by AutoDock-Vina, and the resultant complex was used to initiate MD studies. The trajectories obtained from MD simulation were used to perform the structural analysis. Root-mean-square deviation (RMSD), radius of gyration, hydrogen bond, binding free energy and interaction energy studies revealed that the stability of HDLP-SAHA and HDLP-CBHA is higher than the free HDLP enzyme. The HDLP-CBHA complex shows an increased number of hydrogen bonds (5), high MM-PBSA binding free energy ([Formula: see text][Formula: see text]kJ/mol), high interaction energy ([Formula: see text][Formula: see text]kJ/mol), and an increased number of alpha-helical amino acids (130) compared with HDLP-SAHA. It concluded that the CBHA has the relatively same potential as SAHA to inhibit the HDLP. Consequently, the use of CBHA in clinical application is recommended through this in-silico method.