scholarly journals Some Real-Life Applications of a Newly Designed Algorithm for Nonlinear Equations and Its Dynamics via Computer Tools

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Amir Naseem ◽  
M. A. Rehman ◽  
Jihad Younis

In this article, we design a novel fourth-order and derivative free root-finding algorithm. We construct this algorithm by applying the finite difference scheme on the well-known Ostrowski’s method. The convergence analysis shows that the newly designed algorithm possesses fourth-order convergence. To demonstrate the applicability of the designed algorithm, we consider five real-life engineering problems in the form of nonlinear scalar functions and then solve them via computer tools. The numerical results show that the new algorithm outperforms the other fourth-order comparable algorithms in the literature in terms of performance, applicability, and efficiency. Finally, we present the dynamics of the designed algorithm via computer tools by examining certain complex polynomials that depict the convergence and other graphical features of the designed algorithm.

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1242
Author(s):  
Ramandeep Behl ◽  
Sonia Bhalla ◽  
Eulalia Martínez ◽  
Majed Aali Alsulami

There is no doubt that the fourth-order King’s family is one of the important ones among its counterparts. However, it has two major problems: the first one is the calculation of the first-order derivative; secondly, it has a linear order of convergence in the case of multiple roots. In order to improve these complications, we suggested a new King’s family of iterative methods. The main features of our scheme are the optimal convergence order, being free from derivatives, and working for multiple roots (m≥2). In addition, we proposed a main theorem that illustrated the fourth order of convergence. It also satisfied the optimal Kung–Traub conjecture of iterative methods without memory. We compared our scheme with the latest iterative methods of the same order of convergence on several real-life problems. In accordance with the computational results, we concluded that our method showed superior behavior compared to the existing methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Alicia Cordero ◽  
José L. Hueso ◽  
Eulalia Martínez ◽  
Juan R. Torregrosa

A family of derivative-free methods of seventh-order convergence for solving nonlinear equations is suggested. In the proposed methods, several linear combinations of divided differences are used in order to get a good estimation of the derivative of the given function at the different steps of the iteration. The efficiency indices of the members of this family are equal to 1.6266. Also, numerical examples are used to show the performance of the presented methods, on smooth and nonsmooth equations, and to compare with other derivative-free methods, including some optimal fourth-order ones, in the sense of Kung-Traub’s conjecture.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1038 ◽  
Author(s):  
Sunil Kumar ◽  
Deepak Kumar ◽  
Janak Raj Sharma ◽  
Clemente Cesarano ◽  
Praveen Agarwal ◽  
...  

A plethora of higher order iterative methods, involving derivatives in algorithms, are available in the literature for finding multiple roots. Contrary to this fact, the higher order methods without derivatives in the iteration are difficult to construct, and hence, such methods are almost non-existent. This motivated us to explore a derivative-free iterative scheme with optimal fourth order convergence. The applicability of the new scheme is shown by testing on different functions, which illustrates the excellent convergence. Moreover, the comparison of the performance shows that the new technique is a good competitor to existing optimal fourth order Newton-like techniques.


Author(s):  
Khushbu Rajput ◽  
Asif Ali Shaikh ◽  
Sania Qureshi

This paper, investigates the comparison of the convergence behavior of the proposed scheme and existing schemes in literature. While all schemes having fourth-order convergence and derivative-free nature. Numerical approximation demonstrates that the proposed schemes are able to attain up to better accuracy than some classical methods, while still significantly reducing the total number of iterations. This study has considered some nonlinear equations (transcendental, algebraic and exponential) along with two complex mathematical models. For better analysis graphical representation of numerical methods for finding the real root of nonlinear equations with varying parameters has been included. The proposed scheme is better in reducing error rapidly, hence converges faster as compared to the existing schemes.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Ramandeep Behl ◽  
V. Kanwar

Construction of higher-order optimal and globally convergent methods for computing simple roots of nonlinear equations is an earliest and challenging problem in numerical analysis. Therefore, the aim of this paper is to present optimal and globally convergent families of King's method and Ostrowski's method having biquadratic and eight-order convergence, respectively, permittingf′(x)=0in the vicinity of the required root. Fourth-order King's family and Ostrowski's method can be seen as special cases of our proposed scheme. All the methods considered here are found to be more effective to the similar robust methods available in the literature. In their dynamical study, it has been observed that the proposed methods have equal or better stability and robustness as compared to the other methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ramandeep Behl ◽  
S. S. Motsa

Based on well-known fourth-order Ostrowski’s method, we proposed many new interesting optimal families of eighth-order multipoint methods without memory for obtaining simple roots. Its geometric construction consists in approximatingfn′atznin such a way that its average with the known tangent slopesfn′atxnandynis the same as the known weighted average of secant slopes and then we apply weight function approach. The adaptation of this strategy increases the convergence order of Ostrowski's method from four to eight and its efficiency index from 1.587 to 1.682. Finally, a number of numerical examples are also proposed to illustrate their accuracy by comparing them with the new existing optimal eighth-order methods available in the literature. It is found that they are very useful in high precision computations. Further, it is also noted that larger basins of attraction belong to our methods although the other methods are slow and have darker basins while some of the methods are too sensitive upon the choice of the initial value.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1809 ◽  
Author(s):  
Ramandeep Behl ◽  
Samaher Khalaf Alharbi ◽  
Fouad Othman Mallawi ◽  
Mehdi Salimi

Finding higher-order optimal derivative-free methods for multiple roots (m≥2) of nonlinear expressions is one of the most fascinating and difficult problems in the area of numerical analysis and Computational mathematics. In this study, we introduce a new fourth order optimal family of Ostrowski’s method without derivatives for multiple roots of nonlinear equations. Initially the convergence analysis is performed for particular values of multiple roots—afterwards it concludes in general form. Moreover, the applicability and comparison demonstrated on three real life problems (e.g., Continuous stirred tank reactor (CSTR), Plank’s radiation and Van der Waals equation of state) and two standard academic examples that contain the clustering of roots and higher-order multiplicity (m=100) problems, with existing methods. Finally, we observe from the computational results that our methods consume the lowest CPU timing as compared to the existing ones. This illustrates the theoretical outcomes to a great extent of this study.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1091 ◽  
Author(s):  
Janak Raj Sharma ◽  
Sunil Kumar ◽  
Lorentz Jäntschi

A number of optimal order multiple root techniques that require derivative evaluations in the formulas have been proposed in literature. However, derivative-free optimal techniques for multiple roots are seldom obtained. By considering this factor as motivational, here we present a class of optimal fourth order methods for computing multiple roots without using derivatives in the iteration. The iterative formula consists of two steps in which the first step is a well-known Traub–Steffensen scheme whereas second step is a Traub–Steffensen-like scheme. The Methodology is based on two steps of which the first is Traub–Steffensen iteration and the second is Traub–Steffensen-like iteration. Effectiveness is validated on different problems that shows the robust convergent behavior of the proposed methods. It has been proven that the new derivative-free methods are good competitors to their existing counterparts that need derivative information.


2010 ◽  
Vol 78 (2) ◽  
Author(s):  
Erasmo Carrera ◽  
Marco Petrolo

This work deals with refined theories for beams with an increasing number of displacement variables. Reference has been made to the asymptotic and axiomatic methods. A Taylor-type expansion up to the fourth-order has been assumed over the section coordinates. The finite element governing equations have been derived in the framework of the Carrera unified formulation (CUF). The effectiveness of each expansion term, that is, of each displacement variable, has been established numerically considering various problems (traction, bending, and torsion), several beam sections (square, annular, and airfoil-type), and different beam slenderness ratios. The accuracy of these theories have been evaluated for displacement and stress components at different points over the section and along the beam axis. Error-type parameters have been introduced to establish the role played by each generalized displacement variable. It has been found that the number of terms that have to be retained for each of the considered beam theories is closely related to the addressed problem; different variables are requested to obtain accurate results for different problems. It has, therefore, been concluded that the full implementation of CUF, retaining all the available terms, would avoid the need of changing the theory when a problem is changed (geometries and/or loading conditions), as what happens in most engineering problems. On the other hand, CUF could be used to construct suitable beam theories in view of the fulfillment of prescribed accuracies.


Sign in / Sign up

Export Citation Format

Share Document