scholarly journals Summability of double sequences by weighted mean methods and Tauberian conditions for convergence in Pringsheim's sense

2004 ◽  
Vol 2004 (65) ◽  
pp. 3499-3511 ◽  
Author(s):  
Ferenc Móricz ◽  
U. Stadtmüller

After a brief summary of Tauberian conditions for ordinary sequences of numbers, we consider summability of double sequences of real or complex numbers by weighted mean methods which are not necessarily products of related weighted mean methods in one variable. Our goal is to obtain Tauberian conditions under which convergence of a double sequence follows from its summability, where convergence is understood in Pringsheim's sense. In the case of double sequences of real numbers, we present necessary and sufficient Tauberian conditions, which are so-called one-sided conditions. Corollaries allow these Tauberian conditions to be replaced by Schmidt-type slow decrease conditions. For double sequences of complex numbers, we present necessary and sufficient so-called two-sided Tauberian conditions. In particular, these conditions are satisfied if the summable double sequence is slowly oscillating.

2019 ◽  
Vol 38 (7) ◽  
pp. 9-19
Author(s):  
Gökşen Fındık ◽  
İbrahim Çanak

In this paper, we obtain necessary and sufficient conditions, under which convergence of a double sequence in Pringsheim's sense follows from its weighted-Cesaro summability. These Tauberian conditions are one-sided or two-sided if it is a sequence of real or complex numbers, respectively.


2001 ◽  
Vol 27 (7) ◽  
pp. 399-406 ◽  
Author(s):  
Ferenc Móricz ◽  
Ulrich Stadtmüller

We prove necessary and sufficient Tauberian conditions for sequences summable by weighted mean methods. The main results of this paper apply to all weighted mean methods and unify the results known in the literature for particular methods. Among others, the conditions in our theorems are easy consequences of the slowly decreasing condition for real numbers, or slowly oscillating condition for complex numbers. Therefore, practically all classical (one-sided as well as two-sided) Tauberian conditions for weighted mean methods are corollaries of our two main theorems.


2016 ◽  
Vol 24 (3) ◽  
pp. 173-186
Author(s):  
Roland Coghetto

Abstract First, we define in Mizar [5], the Cartesian product of two filters bases and the Cartesian product of two filters. After comparing the product of two Fréchet filters on ℕ (F1) with the Fréchet filter on ℕ × ℕ (F2), we compare limF₁ and limF₂ for all double sequences in a non empty topological space. Endou, Okazaki and Shidama formalized in [14] the “convergence in Pringsheim’s sense” for double sequence of real numbers. We show some basic correspondences between the p-convergence and the filter convergence in a topological space. Then we formalize that the double sequence converges in “Pringsheim’s sense” but not in Frechet filter on ℕ × ℕ sense. In the next section, we generalize some definitions: “is convergent in the first coordinate”, “is convergent in the second coordinate”, “the lim in the first coordinate of”, “the lim in the second coordinate of” according to [14], in Hausdorff space. Finally, we generalize two theorems: (3) and (4) from [14] in the case of double sequences and we formalize the “iterated limit” theorem (“Double limit” [7], p. 81, par. 8.5 “Double limite” [6] (TG I,57)), all in regular space. We were inspired by the exercises (2.11.4), (2.17.5) [17] and the corrections B.10 [18].


2004 ◽  
Vol 41 (4) ◽  
pp. 391-403 ◽  
Author(s):  
Ferenc Móricz ◽  
Cihan Orhan

The first named author has recently proved necessary and sufficient Tauberian conditions under which statistical convergence (introduced by H. Fast in 1951) follows from statistical summability (C, 1). The aim of the present paper is to generalize these results to a large class of summability methods (,p) by weighted means. Let p = (pk : k = 0,1, 2,...) be a sequence of nonnegative numbers such that po > 0 and Let (xk) be a sequence of real or complex numbers and set for n = 0,1, 2,.... We present necessary and sufficient conditions under which the existence of the limit st-lim xk = L follows from that of st-lim tn = L, where L is a finite number. If (xk) is a sequence of real numbers, then these are one-sided Tauberian conditions. If (xk) is a sequence of complex numbers, then these are two-sided Tauberian conditions.


Filomat ◽  
2020 ◽  
Vol 34 (13) ◽  
pp. 4489-4511
Author(s):  
Zerrin Önder ◽  
İbrahim Çanak

Let (u??) be a double sequence of real or complex numbers which is (C; 1; 1) summable to a finite limit. We obtain some Tauberian conditions of slow decreasing or oscillating types in terms of the generator sequences in certain senses under which P-convergence of a double sequence (u??) follows from its (C,1,1) summability. We give Tauberian theorems in which Tauberian conditions are of Hardy and Landau types as special cases of our results. We present some Tauberian conditions in terms of the de la Vall?e Poussin means of double sequences under which P-convergence of a double sequence (u??) follows from its (C,1,1) summability. Moreover, we give analogous results for (C,1,0) and (C,0,1) summability methods.


2018 ◽  
Vol 37 (4) ◽  
pp. 9
Author(s):  
Naim L. Braha ◽  
Ismet Temaj

Let $(x_k)$, for $k\in \mathbb{N}\cup \{0\}$  be a sequence of real or complex numbers and set $(EC)_{n}^{1}=\frac{1}{2^n}\sum_{j=0}^{n}{\binom{n}{j}\frac{1}{j+1}\sum_{v=0}^{j}{x_v}},$ $n\in \mathbb{N}\cup \{0\}.$  We present necessary and sufficient conditions, under which $st-\lim_{}{x_k}= L$ follows from $st-\lim_{}{(EC)_{n}^{1}} = L,$ where L is a finite number. If $(x_k)$ is a sequence of real numbers, then these are one-sided Tauberian conditions. If $(x_k)$ is a sequence of complex numbers, then these are two-sided Tauberian conditions.


Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Medine Yeşilkayagil ◽  
Feyzi Başar

Let 0 < s < ?. In this study, we introduce the double sequence space Rqt(Ls) as the domain of four dimensional Riesz mean Rqt in the space Ls of absolutely s-summable double sequences. Furthermore, we show that Rqt(Ls) is a Banach space and a barrelled space for 1 ? s < 1 and is not a barrelled space for 0 < s < 1. We determine the ?- and ?(?)-duals of the space Ls for 0 < s ? 1 and ?(bp)-dual of the space Rqt(Ls) for 1 < s < 1, where ? ? {p, bp, r}. Finally, we characterize the classes (Ls:Mu), (Ls:Cbp), (Rqt(Ls) : Mu) and (Rqt(Ls):Cbp) of four dimensional matrices in the cases both 0 < s < 1 and 1 ? s < 1 together with corollaries some of them give the necessary and sufficient conditions on a four dimensional matrix in order to transform a Riesz double sequence space into another Riesz double sequence space.


2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Cemal Belen

AbstractRecently, the concept of weighted generator sequence has been introduced by Çanak and Totur [Comput. Math. Appl. 62 (2011), no. 6, 2609–2615]. They proved that certain conditions in terms of weighted generator sequences are Tauberian conditions for the weighted mean method. In this paper, we present the necessary and sufficient Tauberian conditions based on a weighted generator sequence under which statistical convergence follows from statistical summability by weighted means.


Sign in / Sign up

Export Citation Format

Share Document