double limit
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Yair Zarmi

Abstract In the double limit of high amplitude (xmax → ∞) and high leading power (x2 N+1, N → ∞), (1+1) dimensional conservative nonlinear oscillatory systems exhibit characteristics akin to boundary layer phenomena. The oscillating entity, x(t), tends to a periodic saw-tooth shape of linear segments, the velocity, x′(t), tends to a periodic step-function and the x − x′ phase-space plot tends to a rectangle. This is demonstrated by transforming x and t into proportionately scaled variables, η and θ, respectively. η(θ) is (2-π) periodic in θ and bounded (|η(θ)| ≤ 1). The boundary-layer characteristics show up by the fact that the deviations of η(θ), η′(θ) and the η − η′ phase-space plot from the sharp asymptotic shapes occurs over a range in θ of O(1/N) near the turning points of the oscillations.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ibrahima Sane ◽  
Alassane Diedhiou

Abstract We provide a large deviation principle on the stochastic differential equations with reflecting Wentzel boundary condition if δ ε {\frac{\delta}{\varepsilon}} tends to 0 when the two parameters δ (homogenization parameter) and ε (the large deviations parameter) tend to zero. Here, we suppose that the homogenization parameter converges sufficiently quickly more than the large deviations parameter. Furthermore, we will make explicit the associated rate function.


2021 ◽  
Author(s):  
Zhaoxia Wang ◽  
Hebai Chen ◽  
Yilei Tang

Abstract In this paper, we study the global dynamics of a nonsmooth Rayleigh-Duffing equation x¨ + ax˙ + bx˙|x˙| + cx + dx3 = 0 for the case d > 0, i.e., the focus case. The global dynamics of this nonsmooth Rayleigh-Duffing oscillator for the case d < 0, i.e., the saddle case, has been studied completely in the companion volume [Int. J. Non-Linear Mech., 129 (2021) 103657]. The research for the focus case is more complex than the saddle case, such as the appearance of five limit cycles and the gluing bifurcation which means that two double limit cycle bifurcation curves and one homoclinic bifurcation curve are very adjacent occurs. We present bifurcation diagram, including one pitchfork bifurcation curve, two Hopf bifurcation curves, two double limit cycle bifurcation curves and one homoclinic bifurcation curve. Finally, numerical phase portraits illustrate our theoretical results.


Author(s):  
Olga S. Kostromina

The effect of multi-frequency quasi-periodic perturbations on systems close to twodimensional nonlinear Hamiltonian ones is studied. It is assumed that the corresponding perturbed autonomous system has a double limit cycle. Analysis of the Poincar´e–Pontryagin function constructed for the autonomous system makes it possible to establish the presence of such a cycle. When the condition of commensurability of the natural frequency of the corresponding unperturbed Hamiltonian system with the frequencies of the quasi-periodic perturbation is fulfilled, the unperturbed level becomes resonant. Resonant structures essentially depend on whether the selected resonance levels coincide with the levels that generate limit cycles in the autonomous system. An averaged system is obtained that describes the topology of the neighborhoods of resonance levels. Possible phase portraits of the averaged system are established near the bifurcation case, when the resonance level coincides with the level in whose neighborhood the corresponding autonomous system has a double limit cycle. To illustrate the results obtained, the results of a theoretical study and of a numerical calculation are presented for a specific pendulum-type equation under two-frequency quasi-periodic perturbations.


Author(s):  
O.S. Kostromina

The problem of the effect of two-frequency quasi-periodic perturbations on systems close to arbitrary nonlinear two-dimensional Hamiltonian ones is studied in the case when the corresponding perturbed autonomous systems have a double limit cycle. Its solution is important both for the theory of synchronization of nonlinear oscillations and for the theory of bifurcations of dynamical systems. In the case of commensurability of the natural frequency of the unperturbed system with frequencies of quasi-periodic perturbation, resonance occurs. Averaged systems are derived that make it possible to ascertain the structure of the resonance zone, that is, to describe the behavior of solutions in the neighborhood of individual resonance levels. The study of these systems allows determining possible bifurcations arising when the resonance level deviates from the level of the unperturbed system, which generates a double limit cycle in a perturbed autonomous system. The theoretical results obtained are applied in the study of a two-frequency quasi-periodic perturbed pendulum-type equation and are illustrated by numerical computations.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Mathias Staudigl ◽  
Srinivas Arigapudi ◽  
William H. Sandholm

<p style='text-indent:20px;'>In this article we review a model of stochastic evolution under general noisy best-response protocols, allowing the probabilities of suboptimal choices to depend on their payoff consequences. We survey the methods developed by the authors which allow for a quantitative analysis of these stochastic evolutionary game dynamics. We start with a compact survey of techniques designed to study the long run behavior in the small noise double limit (SNDL). In this regime we let the noise level in agents' decision rules to approach zero, and then the population size is formally taken to infinity. This iterated limit strategy yields a family of deterministic optimal control problems which admit an explicit analysis in many instances. We then move in by describing the main steps to analyze stochastic evolutionary game dynamics in the large population double limit (LPDL). This regime refers to the iterated limit in which first the population size is taken to infinity and then the noise level in agents' decisions vanishes. The mathematical analysis of LPDL relies on a sample-path large deviations principle for a family of Markov chains on compact polyhedra. In this setting we formulate a set of conjectures and open problems which give a clear direction for future research activities.</p>


Author(s):  
Xiaofei Zhou ◽  
Lingfeng Niu ◽  
Qiannan Zhu ◽  
Xingquan Zhu ◽  
Ping Liu ◽  
...  

2020 ◽  
pp. 1-11
Author(s):  
Carlos Alós-Ferrer ◽  
Johannes Buckenmaier ◽  
Federica Farolfi

Abstract A number of theoretical results have provided sufficient conditions for the selection of payoff-efficient equilibria in games played on networks when agents imitate successful neighbors and make occasional mistakes (stochastic stability). However, those results only guarantee full convergence in the long-run, which might be too restrictive in reality. Here, we employ a more gradual approach relying on agent-based simulations avoiding the double limit underlying these analytical results. We focus on the circular-city model, for which a sufficient condition on the population size relative to the neighborhood size was identified by Alós-Ferrer & Weidenholzer [(2006) Economics Letters, 93, 163–168]. Using more than 100,000 agent-based simulations, we find that selection of the efficient equilibrium prevails also for a large set of parameters violating the previously identified condition. Interestingly, the extent to which efficiency obtains decreases gradually as one moves away from the boundary of this condition.


2019 ◽  
Vol 188 (2) ◽  
pp. 205-212
Author(s):  
Liuhong Huang ◽  
Cui Meng ◽  
Yuebo Li ◽  
Jie Yang ◽  
Jiuliang Xiong ◽  
...  

Abstract The safety zone of a large flat-plate bounded-wave electromagnetic pulse simulator was analyzed using the 3D electromagnetic simulation software Computer Simulation Technology. First, the double-limit requirement cited from the GB 8702 for an instantaneous pulse was clarified compared with the International Commission on Non-Ionizing Radiation Protection guidelines. This means that both the amplitude of the time-domain waveforms and all frequency components should be satisfied with the respective exposure limits. Then, the leakage field of a large flat-plate bounded-wave simulator was simulated. After analyzing the peak amplitude of an instantaneous electric field in a certain area, the observation points along six directions were specified, and the corresponding amplitudes were given. Furthermore, it was verified that the time-domain electric field of the critical points was satisfied with the frequency-domain exposure limits. Finally, the safety distances lower than the reference levels were given, and the safety zones corresponding to the three common exposure limits were obtained.


Sign in / Sign up

Export Citation Format

Share Document