scholarly journals A Novel Temozolomide–Perillyl Alcohol Conjugate Exhibits Superior Activity against Breast Cancer Cells In Vitro and Intracranial Triple-Negative Tumor Growth In Vivo

2014 ◽  
Vol 13 (5) ◽  
pp. 1181-1193 ◽  
Author(s):  
Thomas C. Chen ◽  
Hee-Yeon Cho ◽  
Weijun Wang ◽  
Manasi Barath ◽  
Natasha Sharma ◽  
...  
2016 ◽  
Vol 38 (3) ◽  
pp. 1003-1014 ◽  
Author(s):  
Aiyu Zhu ◽  
Yan Li ◽  
Wei Song ◽  
Yumei Xu ◽  
Fang Yang ◽  
...  

Background/Aims: Androgen receptor (AR), a steroid hormone receptor, has recently emerged as prognostic and treatment-predictive marker in breast cancer. Previous studies have shown that AR is widely expressed in up to one-third of triple-negative breast cancer (TNBC). However, the role of AR in TNBC is still not fully understood, especially in mesenchymal stem-like (MSL) TNBC cells. Methods: MSL TNBC MDA-MB-231 and Hs578T breast cancer cells were exposed to various concentration of agonist 5-α-dihydrotestosterone (DHT) or nonsteroidal antagonist bicalutamide or untreated. The effects of AR on cell viability and apoptosis were determined by MTT assay, cell counting, flow cytometry analysis and protein expression of p53, p73, p21 and Cyclin D1 were analyzed by western blotting. The bindings of AR to p73 and p21 promoter were detected by ChIP assay. MDA-MB-231 cells were transplanted into nude mice and the tumor growth curves were determined and expression of AR, p73 and p21 were detected by Immunohistochemistry (IHC) staining after treatment of DHT or bicalutamide. Results: We demonstrate that AR agonist DHT induces MSL TNBC breast cancer cells proliferation and inhibits apoptosis in vitro. Similarly, activated AR significantly increases viability of MDA-MB-231 xenografts in vivo. On the contrary, AR antagonist, bicalutamide, causes apoptosis and exerts inhibitory effects on the growth of breast cancer. Moreover, DHT-dependent activation of AR involves regulation in the cell cycle related genes, including p73, p21 and Cyclin D1. Further investigations indicate the modulation of AR on p73 and p21 mediated by direct binding of AR to their promoters, and DHT could make these binding more effectively. Conclusions: Our study demonstrates the tumorigenesis role of AR and the inhibitory effect of bicalutamide in AR-positive MSL TNBC both in vitro and in vivo, suggesting that AR inhibition could be a potential therapeutic approach for AR-positive TNBC patients.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 10101-10101
Author(s):  
J. Hartman ◽  
K. Lindberg ◽  
J. Inzunza ◽  
J. Wan ◽  
A. Ström ◽  
...  

10101 Background: Estrogens are well known stimulators of breast cancer cell growth in vitro as well as in vivo. Two different estrogen receptors exist, namely estrogen receptor (ER) α and β. ERα mediates the proliferative effect of estrogen in breast cancer cells and we have earlier shown that ERβ inhibits cell-cycle progression in vitro. Estrogens are well known stimulators of in vivo breast cancer cell growth as well as angiogenesis, and the effect is mediated through ERα. The function of ERβ in this context is not well understood. Methods: We have used ERα-positive T47D breast cancer cells stably transfected with a Tet/Off regulated ERβ expression vector system. The ERβ-inducible tumor cells are studied in vitro as well as in vivo. Results: By transplanting ERβ-inducible breast cancer cells into SCID-mice, we show that ERβ inhibits tumor growth and reduces the volume of established tumors. Furthermore, we show by immunohistochemistry, that the number of blood microvessels in the tumor periphery is decreased by ERβ expression, counteracting the well-known pro-angiogenic effect of ERα. By Western blot analysis on tumor extracts, we show that the concentration of the important pro-angiogenic growth factors VEGF and bFGF, normally expressed by breast tumor cells, is decreased in the ERβ-expressing tumors compared to the normal tumors. To exclude that the observed anti-angiogenic effect is just a result of reduced tumor growth, we incubated Tet/Off regulated ERβ expressing cells in vitro, during non-hypoxic conditions. We found that the expression of ERβ leads to decreased expression of VEGF and PDGFβ at the mRNA and protein-levels. In transient transfection assays, we found estrogen-ERα mediated up regulation of VEGF, PDGFβ and bFGF-promoter activities in T47D cells, and these activities were all suppressed following co-transfection with an ERβ-expression vector. Conclusions: We conclude that ERβ inhibits growth factor expression at transcriptional level in breast cancer cells; taken together, our data indicates that ERβ inhibits growth and angiogenesis of tumors formed by T47D breast cancer cells. This makes ERβ an interesting therapeutic target in breast cancer and perhaps treatment with the newly designed ERβ-selective ligands might work as a new anti-proliferative and anti-angiogenic therapy. No significant financial relationships to disclose.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e14565-e14565
Author(s):  
D. Sharma ◽  
B. B. Knight ◽  
R. Yacoub ◽  
T. Liu ◽  
L. Taliaferro-Smith ◽  
...  

e14565 Background: The outcome for patients with breast cancer has been significantly improved by the use of targeted agents. The prognosis of triple negative (TN) breast cancers, which do not express hormone receptors (ER, PR) or Her2, is poor, because of an aggressive clinical course and lack of targeted therapeutic agents. Epigenetic silencing of specific genes has been observed in breast cancer and some of these genes are more important due to available targeted therapies such as ER. Since all endocrine therapies are designed to block ER function in some way, the identification of new therapies or strategies that could sensitize TN breast cancers to existing endocrine therapy could provide a revolutionary means of treating this aggressive subtype of cancer Methods: We examined the efficacy of combined treatment of HDAC inhibitor LBH589 and DNMT inhibitor decitabine to regenerate ER and PR in TN breast cancer cells using RT-PCR and immunoblotting. Changes in growth and proliferation of TN breast cancer cells in response to LBH589 and decitabine treatment were determined by XTT, BrdU incorporation and colony formation assay. Changes in apoptotic proteins were determined by western blotting. Athymic nude mice were used to establish pre-clinical models for TN breast cancer cells and effectiveness of combined treatment of LBH589 and decitabine was determined. Tumors biopsies were analyzed for ER and PR re-expression by western blot analysis and immunohistochemistry at the end of the treatment. Results: Combined treatment of LBH589 and decitabine resulted in re-expression of ER and PR in TN breast cancers in vitro and in vivo. Although re-expression of ER and PR were noted following LBH589 treatment alone, re-expression was more robust with the combination. TN breast cancer cells showing re-expressed ER can be targeted with tamoxifen. Tamoxifen inhibits growth of TN breast cancer cells re- expressing ER by triggering apoptosis. Conclusions: The importance of epigenetic events such as DNA methylation and HDAC inhibition in tumor progression is becoming increasingly evident. A trial evaluating the ability of LBH589 and decitabine to re- express ER, which can then be targeted by tamoxifen, is planned in patients with metastatic TN breast cancer. No significant financial relationships to disclose.


Oncotarget ◽  
2018 ◽  
Vol 9 (68) ◽  
pp. 33050-33050 ◽  
Author(s):  
Bhimashankar Gurushidhappa Utage ◽  
Milind Shivajirao Patole ◽  
Punam Vasudeo Nagvenkar ◽  
Sonali Shankar Kamble ◽  
Rajesh Nivarti Gacche

Oncotarget ◽  
2018 ◽  
Vol 9 (54) ◽  
pp. 30304-30323 ◽  
Author(s):  
Bhimashankar Gurushidhappa Utage ◽  
Milind Shivajirao Patole ◽  
Punam Vasudeo Nagvenkar ◽  
Sonali Shankar Kamble ◽  
Rajesh Nivarti Gacche

2012 ◽  
Vol 5 ◽  
pp. CGM.S9845 ◽  
Author(s):  
Mark E. Reeves ◽  
Robert J. Aragon ◽  
Mariana Alfakhouri ◽  
Shin-Tai Chen ◽  
Nancy Lowen ◽  
...  

The Ras association domain family 1 (RASSF1) gene is a Ras effector that plays an important role in carcinogenesis. We have previously shown that silencing of RASSF1C decreases and over-expression of RASSF1C increases cell proliferation, migration, and attenuates apoptosis of breast cancer cells in vitro. To further confirm our working hypothesis that RASSF1C may play a role as a growth promoter, we have tested the growth of human breast cancer cells stably over-expressing RASSF1A or RASSF1C in nude mice. Our studies show that breast cancer cells over-expressing HA-RASSF1A developed significantly smaller tumors and cells over-expressing HA-RASSF1C developed significantly larger tumors compared to control cells expressing the vector back bone. We have confirmed the expression of HA-RASSF1A and HA-RASSF1C in tumor tissue using RT-PCR, western blotting and immunohistochemical analyses using HA-antibody. Together, our previous in vitro and current in vivo findings further support our hypothesis that RASSF1C, unlike RASSF1A, is not a tumor suppressor and rather it appears to function as tumor growth promoter in breast cancer cells.


2020 ◽  
Author(s):  
Lungwani Muungo

Biodegradable nanopolymers are believed to offer great potential in cancer therapy. Here, we report thecharacterization of a novel, targeted, nanobiopolymeric conjugate based on biodegradable, nontoxic, andnonimmunogenic PMLA [poly(b-L-malic acid)]. The PMLA nanoplatform was synthesized for repetitive systemictreatments of HER2/neu-positive human breast tumors in a xenogeneic mouse model. Various moieties werecovalently attached to PMLA, including a combination of morpholino antisense oligonucleotides (AON) directedagainst HER2/neu mRNA, to block new HER2/neu receptor synthesis; anti-HER2/neu antibody trastuzumab(Herceptin), to target breast cancer cells and inhibit receptor activity simultaneously; and transferrin receptorantibody, to target the tumor vasculature and mediate delivery of the nanobiopolymer through the hostendothelial system. The results of the study showed that the lead drug tested significantly inhibited the growth ofHER2/neu-positive breast cancer cells in vitro and in vivo by enhanced apoptosis and inhibition of HER2/neureceptor signaling with suppression of Akt phosphorylation. In vivo imaging analysis and confocal microscopydemonstrated selective accumulation of the nanodrug in tumor cells via an active delivery mechanism. Systemictreatment of human breast tumor-bearing nude mice resulted in more than 90% inhibition of tumor growth andtumor regression, as compared with partial (50%) tumor growth inhibition in mice treated with trastuzumab orAON, either free or attached to PMLA. Our findings offer a preclinical proof of concept for use of the PMLAnanoplatform for combination cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document