cancer cell growth
Recently Published Documents


TOTAL DOCUMENTS

2945
(FIVE YEARS 1166)

H-INDEX

94
(FIVE YEARS 26)

2022 ◽  
Vol 12 (3) ◽  
pp. 630-633
Author(s):  
Chencheng Ding ◽  
Yunjie Zheng ◽  
Dan Li ◽  
Min Zhu ◽  
Yong Zhu

Hepatocellular carcinoma (HCC) seriously threatens human health and life quality. Natural killer (NK) cells play important roles in liver immune function. Bone marrow mesenchymal stem cell (BMSC) exosomes (Exo) participate in tissue damage. This study explored BMSC-Exo’s effect on NK cells’ anti-tumor activity. NK cells were isolated from the livers of mice with liver cancer. NK cells with or without BMSC-Exo treatment were co-cultured with liver cancer cells to assess cell proliferation. Administration of BMSC-Exo into mice with liver cancer significantly suppressed liver cancer cell growth. In addition, BMSC-Exo treatment significantly improved NK cells’ anti-tumor effect whic was related to BMSC-Exo-induced up-regulation of miR-1925. Implantation of BMSC-Exo into mice with liver cancer at different time periods can significantly suppress liver cancer cell growth. At the same time, BMSC-Exo implantation inhibited the expression of cell proliferation marker protein(Ki67). In vitro study found that BMSC-Exo treatment significantly increased miR-1925 level and the toxicity of NK cells to HCC cells. In addition, miR-1925 overexpression in NK cells significantly increased NK cells’ anti-tumor activity. In conclusion, this study proved that up-regulation of miR-1925 by BMSC can inhibit the growth of liver cancer by promoting the anti-tumor activity of NK cells.


2022 ◽  
Vol 7 ◽  
pp. 100252
Author(s):  
Ruijia Hu ◽  
Jingwen Xu ◽  
Guangyan Qi ◽  
Weiqun Wang ◽  
Xiuzhi Susan Sun ◽  
...  

2022 ◽  
Vol 11 ◽  
Author(s):  
Christos A. Aggelopoulos ◽  
Anna-Maria Christodoulou ◽  
Myrsini Tachliabouri ◽  
Stauros Meropoulis ◽  
Maria-Elpida Christopoulou ◽  
...  

Breast cancer exists in multiple subtypes some of which still lack a targeted and effective therapy. Cold atmospheric plasma (CAP) has been proposed as an emerging anti-cancer treatment modality. In this study, we investigated the effects of direct and indirect CAP treatment driven by the advantageous nanosecond pulsed discharge on breast cancer cells of different malignant phenotypes and estrogen receptor (ER) status, a major factor in the prognosis and therapeutic management of breast cancer. The main CAP reactive species in liquid (i.e. H2O2, NO2−/NO3−) and gas phase were determined as a function of plasma operational parameters (i.e. treatment time, pulse voltage and frequency), while pre-treatment with the ROS scavenger NAC revealed the impact of ROS in the treatment. CAP treatment induced intense phenotypic changes and apoptosis in both ER+ and ER- cells, which is associated with the mitochondrial pathway as evidenced by the increased Bax/Bcl-2 ratio and cleavage of PARP-1. Interestingly, CAP significantly reduced CD44 protein expression (a major cancer stem cell marker and matrix receptor), while differentially affected the expression of proteases and inflammatory mediators. Collectively, the findings of the present study suggest that CAP suppresses breast cancer cell growth and regulates several effectors of the tumor microenvironment and thus it could represent an efficient therapeutic approach for distinct breast cancer subtypes.


2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Nikki L. Raftopulos ◽  
Tinashe C. Washaya ◽  
Andreas Niederprüm ◽  
Antonia Egert ◽  
Mariam F. Hakeem-Sanni ◽  
...  

Abstract Background Prostate cancer growth is driven by androgen receptor signaling, and advanced disease is initially treatable by depleting circulating androgens. However, prostate cancer cells inevitably adapt, resulting in disease relapse with incurable castrate-resistant prostate cancer. Androgen deprivation therapy has many side effects, including hypercholesterolemia, and more aggressive and castrate-resistant prostate cancers typically feature cellular accumulation of cholesterol stored in the form of cholesteryl esters. As cholesterol is a key substrate for de novo steroidogenesis in prostate cells, this study hypothesized that castrate-resistant/advanced prostate cancer cell growth is influenced by the availability of extracellular, low-density lipoprotein (LDL)-derived, cholesterol, which is coupled to intracellular cholesteryl ester homeostasis. Methods C4-2B and PC3 prostate cancer cells were cultured in media supplemented with fetal calf serum (FCS), charcoal-stripped FCS (CS-FCS), lipoprotein-deficient FCS (LPDS), or charcoal-stripped LPDS (CS-LPDS) and analyzed by a variety of biochemical techniques. Cell viability and proliferation were measured by MTT assay and Incucyte, respectively. Results Reducing lipoprotein availability led to a reduction in cholesteryl ester levels and cell growth in C4-2B and PC3 cells, with concomitant reductions in PI3K/mTOR and p38MAPK signaling. This reduced growth in LPDS-containing media was fully recovered by supplementation of exogenous low-density lipoprotein (LDL), but LDL only partially rescued growth of cells cultured with CS-LPDS. This growth pattern was not associated with changes in androgen receptor signaling but rather increased p38MAPK and MEK1/ERK/MSK1 activation. The ability of LDL supplementation to rescue cell growth required cholesterol esterification as well as cholesteryl ester hydrolysis activity. Further, growth of cells cultured in low androgen levels (CS-FCS) was suppressed when cholesteryl ester hydrolysis was inhibited. Conclusions Overall, these studies demonstrate that androgen-independent prostate cancer cell growth can be influenced by extracellular lipid levels and LDL-cholesterol availability and that uptake of extracellular cholesterol, through endocytosis of LDL-derived cholesterol and subsequent delivery and storage in the lipid droplet as cholesteryl esters, is required to support prostate cancer cell growth. This provides new insights into the relationship between extracellular cholesterol, intracellular cholesterol metabolism, and prostate cancer cell growth and the potential mechanisms linking hypercholesterolemia and more aggressive prostate cancer.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Zhang ◽  
Bo Wang ◽  
Yilin Lin ◽  
Yang Yang ◽  
Zhen Zhang ◽  
...  

Abstract Background Circular RNAs (circRNAs) have emerged as vital regulators of the initiation and progression of diverse kinds of human cancers. In this study, we explored the role of hsa_circ_0000231 and its downstream pathway in CRC. Methods The expression profile of circRNAs in 5 pairs of CRC tissues and adjacent normal tissues were analyzed by Microarray. Quantitative real-time PCR and in situ hybridization and Base Scope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, functional experiments in vitro and in vivo were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and IGF2BP3 or has_miR-375. Results We acquired data through circRNA microarray profiles, showing that the expression of hsa_circ_0000231 was upregulated in CRC primary tissues compared to adjacent normal tissues, which was indicated poor prognosis of patients with CRC. Functional analysis indicated that inhibition of hsa_circ_0000231 in CRC cell lines could suppress CRC cell proliferation as well as tumorigenesis in vitro and in vivo. The mechanistic analysis showed that hsa_circ_0000231 might, on the one hand, act as a competing endogenous RNA of miR-375 to promote cyclin D2 (CCND2) and, on the other hand, bind to the IGF2BP3 protein to prevent CCND2 degradation. Conclusions The findings suggested that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2, implying that hsa_circ_0000231 might be a potential new diagnostic and therapeutic biomarker of CRC.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 363
Author(s):  
Carolin Siech ◽  
Jochen Rutz ◽  
Sebastian Maxeiner ◽  
Timothy Grein ◽  
Marlon Sonnenburg ◽  
...  

Insulin-like growth factor-1 (IGF-1)-related signaling is associated with prostate cancer progression. Links were explored between IGF-1 and expression of integrin adhesion receptors to evaluate relevance for growth and migration. Androgen-resistant PC3 and DU145 and androgen-sensitive LNCaP and VCaP prostate cancer cells were stimulated with IGF-1 and tumor growth (all cell lines), adhesion and chemotaxis (PC3, DU145) were determined. Evaluation of Akt/mTOR-related proteins, focal adhesion kinase (FAK) and integrin α and β subtype expression followed. Akt knock-down was used to investigate its influence on integrin expression, while FAK blockade served to evaluate its influence on mTOR signaling. Integrin knock-down served to investigate its influence on tumor growth and chemotaxis. Stimulation with IGF-1 activated growth in PC3, DU145, and VCaP cells, and altered adhesion and chemotactic properties of DU145 and PC3 cells. This was associated with time-dependent alterations of the integrins α3, α5, αV, and β1, FAK phosphorylation and Akt/mTOR signaling. Integrin blockade or integrin knock-down in DU145 and PC3 cells altered tumor growth, adhesion, and chemotaxis. Akt knock-down (DU145 cells) cancelled the effect of IGF-1 on α3, α5, and αV integrins, whereas FAK blockade cancelled the effect of IGF-1 on mTOR signaling (DU145 cells). Prostate cancer growth and invasion are thus controlled by a fine-tuned network between IGF-1 driven integrin-FAK signaling and the Akt-mTOR pathway. Concerted targeting of integrin subtypes along with Akt-mTOR signaling could, therefore, open options to prevent progressive dissemination of prostate cancer.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Weihua Chen ◽  
Weifeng Wang ◽  
Jun Zhang ◽  
Guoqiang Liao ◽  
Jie Bai ◽  
...  

Traditional Chinese medicine (TCM) is widely used as an alternative therapy for cancer treatment in China. Glutamine catabolism plays an important role in cancer development. Qici Sanling decoction (QCSL) suppresses bladder cancer growth. However, the association between QCSL and glutamine catabolism remains unknown. In this study, different doses of QCSL were applied to T24 cells, followed by the measurements of cell viability and apoptosis using CCK-8 and Annexin V/PI assay, respectively. Furthermore, glutamine consumption was detected using the glutamine assay kit. QCSL was observed to inhibit cell growth and induced cell apoptosis in a dose-dependent manner. Analysis of glutamine consumption revealed that QCSL suppressed glutamine consumption in T24 cells. Furthermore, QCSL decreased the mRNA and protein levels of c-Myc, GLS1, and SLC1A5. All these effects induced by QCSL could be alleviated by c-Myc overexpression, indicating c-Myc was involved in the protective role of QCSL in bladder cancer. In addition, QCSL was found to inhibit tumor growth in the xenograft tumor model. The similar results were obtained in tumor samples that protein levels of c-Myc, GLS1, and SLC1A5 were decreased upon treatment with QCSL. In conclusion, QCSL suppresses glutamine consumption and bladder cancer cell growth through inhibiting c-Myc expression.


Sign in / Sign up

Export Citation Format

Share Document