cancer cells
Recently Published Documents


(FIVE YEARS 23337)



2022 ◽  
Narongchai Autsavapromporn ◽  
Alisa Kobayashi ◽  
Cuihua Liu ◽  
Churdsak Jaikang ◽  
Tengku Ahbrizal Tengku Ahmad ◽  

Radiation-induced bystander effect (RIBE) has been identified as an important contributing factor to tumor resistance and normal tissue damage. However, the RIBE in cancer and normal cells under hypoxia remain unclear. In this study, confluent A549 cancer and WI-38 normal cells were subjected to condition of hypoxia or normoxia, before exposure to high-LET protons microbeam. After 6 h incubation, cells were harvested and assayed for colony formation, micronucleus formation, chromosome aberration and western blotting. Our results show that there were differences of RIBE in bystander A549 and WI-38 cells under hypoxia and normoxia. The differences were also observed in the roles of HIF-1α expression in bystander A549 and WI-38 cells under both conditions. Furthermore, inhibition of gap junction intercellular communication (GJIC) showed a decrease in toxicity of hypoxia-treated bystander A549 cells, but increased in bystander WI-38 cells. These findings clearly support that GJIC protection of bystander normal cells from toxicity while enhancing in bystander cancer cells. Together, the data show a promising strategy for high-LET radiation in designing an entire new line of drugs, either increase or restore GJIC in bystander cancer cells which in turn leads to enhancement of radiation accuracy for treatment of hypoxic tumors.

2022 ◽  
Vol 12 (3) ◽  
pp. 617-624
Juan Zheng ◽  
Liang Zhou

This study intends to investigate whether miR-29b derived from BMSC exosomes (BMSC-exos) affects laryngeal cancer progression. RT-qPCR detected miR-29b level in BMSCs and BMSC-exos. After miR-29b was overexpressed in BMSCs, exos were extracted from BMSCs and used to treat laryngeal cancer cells, followed by CCK-8 assay and soft agar assay. When cells were treated with FOXP1 inhibitor or cyclin E2 vector, Western blot analyzed the expression of related proteins and flow cytometry assessed cell cycle distribution. In vivo experiment was conducted to assess miR-29b’s effect on tumor growth. miR-29b was upregulated in BMSC-exos, but lowly expressed in cancer cells. miR-29b upregulation inhibited the proliferation of laryngeal cancer cells and delayed tumor progression In vivo by inducing cell cycle arrest. Importantly, miR-29b bound 3′UTR of FXOP1 to inhibit its expression, and further reduced cyclin E2 level. sh-FXOP1 or cyclin E2 vector can restore the cell cycle and proliferation caused by miR-29b. In conclusion, miR-29b enriched in BMSC-exo can down-regulate cyclin E2 expression through targeted inhibition of FXOP1, thereby inhibiting the progression of laryngeal cancer.

2022 ◽  
Vol 12 (5) ◽  
pp. 1053-1058
Shunfu Zhu ◽  
Neng Jiang ◽  
Jianjun Zhu

Objective: Yes-associated protein 1 (YAP1) regulates cell proliferation and apoptosis. Abnormal miR-375 level was related to thyroid cancer. Software predicted a relationship between miR-375 and YAP1. Our study investigated whether miR-375 regulates YAP1 expression and affects thyroid cancer cells. Methods: The tumor tissues and adjacent tissues of thyroid cancer patients were collected to measure miR-375 and YAP1 expression. The dual luciferase reporter experiment verified the regulation between miR-375 and YAP1. Thyroid cancer cell line B-CPAP and TPC-1 cells were divided into miR-NC group and miR-375 mimic group followed by analysis of cell proliferation by flow cytometry, caspase-3 activity, and cell clone formation ability by plate cloning assay. Results: Compared with adjacent cancer tissues, miR-375 in thyroid cancer tissues was decreased and YAP1 was increased. miR-375 targets YAP1. Compared with Nthy-ori 3-1 cells, miR-375 in B-CPAP and TPC-1 cells was significantly reduced and YAP1 was increased. Transfection with miR-375 mimic significantly inhibited cell proliferation, increase caspase-3 activity, and reduced the ability of cells to form clones. Conclusion: miR-375 can inhibit YAP1 expression, decrease the proliferation of thyroid cancer cells, induce cell apoptosis, and reduce clone formation.

2022 ◽  
Vol 12 (4) ◽  
pp. 820-826
Chengyong Wu ◽  
Weifeng Wei ◽  
Jing Li ◽  
Shenglin Peng

Epithelial-mesenchymal transition (EMT) is closely related to the migrating and invading behaviors of cells. Periostin is one of the essential components in the extracellular matrix and can induce EMT of cells and their sequential metastasis. But its underlying mechanism is unclear. The Hela and BMSC cell lines were assigned into Periostin-mimic group, Periostin-Inhibitor group and Periostin-NC group followed by analysis of cell migration and invasion, expression of E-Cadherin, Vimentin, β-Catenin, Snail, MMP-2, MMP-9, PTEN, and p-PTEN. Cells in Periostin-mimic group exhibited lowest migration, least number of invaded cells, as well as lowest levels of Vimentin, β-Catenin, Snail, MMP-2, MMP-9, p-PTEN, Akt, p-Akt, p-GSK-3β, p-PDK1 and p-cRcf, along with highest levels of E-cadherin and PTEN. Moreover, cells in Periostin-NC group had intermediate levels of these above indicators, while, the Periostin-Inhibitor group exhibited the highest migration rate, the most number of invaded cells, and the highest levels of these proteins (P < 0.05). In conclusion, BMSCs-derived Periostin can influence the EMT of cervical cancer cells possibly through restraining the activity of the PI3K/AKT signal transduction pathway, indicating that Periostin might be a target of chemotherapy in clinics for the treatment of cervical cancer.

2022 ◽  
Vol 12 (2) ◽  
pp. 273-278
Daqing Jiang ◽  
Xianxin Xie ◽  
Cong Wang ◽  
Weijie Li ◽  
Jianjun He

Our study intends to assess the relationship between exosomes derived from bone marrow mesenchymal stem cells (BMSC-exo) and breast cancer. BMSC-exo were isolated and characterized by transmission electron microscopy. After transfection of BMSCs with miR-204 inhibitor, breast cancer cells were incubated with BMSC-exo followed by analysis of cell proliferation by CCK-8 assay, cell apoptosis by flow cytometry, and expression of apoptosis-related protein and NF-κB signaling by western blot. The co-culture of BMSC-exo with breast cancer cells enhanced miR-204 transcription, inhibited cell proliferation and induced apoptosis. Further, BMSC-exo accelerated apoptosis as demonstrated by the increased level of Bax and casepase-3 and decreased Bcl-2 expression, as well as reduced NF-κB signaling activity. But knockdown of miR-204 abolished the effect of BMSC-exo on apoptosis and proliferation with NF-κB signaling activation. In conclusion, miR-204 from BMSC-exo restrains growth of breast cancer cell and might be a novel target for treating breast cancer.

2022 ◽  
Vol 146 ◽  
pp. 112543
Emilie Bersuder ◽  
Chloe Terciolo ◽  
Mathilde Lechevrel ◽  
Elisabeth Martin ◽  
Celine Quesnelle ◽  

Sign in / Sign up

Export Citation Format

Share Document