Cancer Cells
Recently Published Documents


TOTAL DOCUMENTS

94303
(FIVE YEARS 39467)

H-INDEX

302
(FIVE YEARS 78)

2022 ◽  
Vol 10 (1) ◽  
pp. 007-010
Author(s):  
Michael John Dochniak

Vitamins are essential for cellular growth and nutrition. The bioavailability of vitamins may affect the immune system’s ability to fight cancer. Research efforts investigate the complex interplay of vitamins, immune cells, and cancer cells to improve treatment outcomes. This review explores managing the intake of vitamin A, B, C, D, E, and K to enhance the efficacy of forced-atopy cancer immunotherapy.


2022 ◽  
Vol 94 ◽  
pp. 75-84
Author(s):  
Andrea Ciardiello ◽  
Saverio Altierix ◽  
Francesca Ballarini ◽  
Valerio Bocci ◽  
Silva Bortolussi ◽  
...  

2022 ◽  
Vol 12 (3) ◽  
pp. 617-624
Author(s):  
Juan Zheng ◽  
Liang Zhou

This study intends to investigate whether miR-29b derived from BMSC exosomes (BMSC-exos) affects laryngeal cancer progression. RT-qPCR detected miR-29b level in BMSCs and BMSC-exos. After miR-29b was overexpressed in BMSCs, exos were extracted from BMSCs and used to treat laryngeal cancer cells, followed by CCK-8 assay and soft agar assay. When cells were treated with FOXP1 inhibitor or cyclin E2 vector, Western blot analyzed the expression of related proteins and flow cytometry assessed cell cycle distribution. In vivo experiment was conducted to assess miR-29b’s effect on tumor growth. miR-29b was upregulated in BMSC-exos, but lowly expressed in cancer cells. miR-29b upregulation inhibited the proliferation of laryngeal cancer cells and delayed tumor progression In vivo by inducing cell cycle arrest. Importantly, miR-29b bound 3′UTR of FXOP1 to inhibit its expression, and further reduced cyclin E2 level. sh-FXOP1 or cyclin E2 vector can restore the cell cycle and proliferation caused by miR-29b. In conclusion, miR-29b enriched in BMSC-exo can down-regulate cyclin E2 expression through targeted inhibition of FXOP1, thereby inhibiting the progression of laryngeal cancer.


2022 ◽  
Vol 12 (4) ◽  
pp. 820-826
Author(s):  
Chengyong Wu ◽  
Weifeng Wei ◽  
Jing Li ◽  
Shenglin Peng

Epithelial-mesenchymal transition (EMT) is closely related to the migrating and invading behaviors of cells. Periostin is one of the essential components in the extracellular matrix and can induce EMT of cells and their sequential metastasis. But its underlying mechanism is unclear. The Hela and BMSC cell lines were assigned into Periostin-mimic group, Periostin-Inhibitor group and Periostin-NC group followed by analysis of cell migration and invasion, expression of E-Cadherin, Vimentin, β-Catenin, Snail, MMP-2, MMP-9, PTEN, and p-PTEN. Cells in Periostin-mimic group exhibited lowest migration, least number of invaded cells, as well as lowest levels of Vimentin, β-Catenin, Snail, MMP-2, MMP-9, p-PTEN, Akt, p-Akt, p-GSK-3β, p-PDK1 and p-cRcf, along with highest levels of E-cadherin and PTEN. Moreover, cells in Periostin-NC group had intermediate levels of these above indicators, while, the Periostin-Inhibitor group exhibited the highest migration rate, the most number of invaded cells, and the highest levels of these proteins (P < 0.05). In conclusion, BMSCs-derived Periostin can influence the EMT of cervical cancer cells possibly through restraining the activity of the PI3K/AKT signal transduction pathway, indicating that Periostin might be a target of chemotherapy in clinics for the treatment of cervical cancer.


2022 ◽  
Vol 12 (4) ◽  
pp. 862-866
Author(s):  
Qiuxiang Ning ◽  
Fa Guo ◽  
Pengfei Xiao ◽  
Xiulan Liu ◽  
Ya Ding

The tumorigenesis mechanism of cervical cancer (CC) is complicated as several pathways deserve exploration. LncRNAs are recently highlighted to be involved in various biological processes. The role of bone marrow mesenchymal stem cells (BMSCs) in tumor regulation is recently investigated. Herein, we aimed to explore the interaction between lncRNA Neu and microRNA (miR)-625 and BMSCs in CC. Expression levels of lncRNA Neu and miR-625 in CC cells and BMSCs were determined by RT-qPCR. The relationship between lncRNA Neu and miR-625 was analyzed by Pearson correlation analysis. After cancer cells were transfected with siRNA-Neu, CCK-8 assay and clone formation assay were conducted to determine cell proliferation and viability. LncRNA Neu was highly expressed in CC cells and poorly expressed in BMSCs. Knockdown of lncRNA Neu attenuated cell viability and proliferation while increased miR-625 expression. MiR-625 expression was negatively correlated with expression of lncRNA Neu in CC cells. Overexpression of miR-625 resulted in weakened CC cell viability. Collectively, lncRNA Neu was highly expressed in CC and promoted the development of CC through stimulating the growth of BMSCs and suppressing miR-625 expression. These findings provide a novel insight into targeted therapy for CC.


2022 ◽  
Vol 12 (5) ◽  
pp. 920-925
Author(s):  
He Bai ◽  
Jian He

The BMSCs are one of the components of tumor micro-environment and participate in tumor evolution. Our study aimed to discuss the effect of exosome derived from BMSC on gastric cancer cells. Tumor and para-tumor tissues were isolated to measure miR-206 level by RT-PCR. Gastric cancer cell behaviors were analyzed using MTT assay and scratch test. Gastric cancer model was established and treated TIGIT inhibitor to assess its role in the tumor growth in vivo. The miR-206 in exosome from BMSCs in cancer tissue was detected. CD8 expression excreted by DC could be induced after miR-206 treatment possibly through regulating the signaling pathway of TIGIT/PVR. Inhibition of TIGIT decreased tumor growth, development and reversed tumor phenotype. In conclusion, miR-206 derived from BMSCs induces CD8 expression in gastric cancer through regulating the signaling pathway of TIGIT/PVR, indicating that it might be a novel target for the treatment of gastric cancer.


2022 ◽  
Vol 12 (5) ◽  
pp. 1053-1058
Author(s):  
Shunfu Zhu ◽  
Neng Jiang ◽  
Jianjun Zhu

Objective: Yes-associated protein 1 (YAP1) regulates cell proliferation and apoptosis. Abnormal miR-375 level was related to thyroid cancer. Software predicted a relationship between miR-375 and YAP1. Our study investigated whether miR-375 regulates YAP1 expression and affects thyroid cancer cells. Methods: The tumor tissues and adjacent tissues of thyroid cancer patients were collected to measure miR-375 and YAP1 expression. The dual luciferase reporter experiment verified the regulation between miR-375 and YAP1. Thyroid cancer cell line B-CPAP and TPC-1 cells were divided into miR-NC group and miR-375 mimic group followed by analysis of cell proliferation by flow cytometry, caspase-3 activity, and cell clone formation ability by plate cloning assay. Results: Compared with adjacent cancer tissues, miR-375 in thyroid cancer tissues was decreased and YAP1 was increased. miR-375 targets YAP1. Compared with Nthy-ori 3-1 cells, miR-375 in B-CPAP and TPC-1 cells was significantly reduced and YAP1 was increased. Transfection with miR-375 mimic significantly inhibited cell proliferation, increase caspase-3 activity, and reduced the ability of cells to form clones. Conclusion: miR-375 can inhibit YAP1 expression, decrease the proliferation of thyroid cancer cells, induce cell apoptosis, and reduce clone formation.


2022 ◽  
Author(s):  
Eun-Ae Kim ◽  
Ji Hoon Jang ◽  
Eon-Gi Sung ◽  
In-Hwan Song ◽  
Joo-Young Kim ◽  
...  

Author(s):  
Tao Yang ◽  
Zhengdong Deng ◽  
Lei Xu ◽  
Xiangyu Li ◽  
Tan Yang ◽  
...  

Abstract Background Recent data indicated that macrophages may mutually interact with cancer cells to promote tumor progression and chemoresistance, but the interaction in cholangiocarcinoma (CCA) is obscure. Methods 10x Genomics single-cell sequencing technology was used to identified the role of macrophages in CCA. Then, we measured the expression and prognostic role of macrophage markers and aPKCɩ in 70 human CCA tissues. Moreover, we constructed monocyte-derived macrophages (MDMs) generated from peripheral blood monocytes (PBMCs) and polarized them into M1/M2 macrophages. A co-culture assay of the human CCA cell lines (TFK-1, EGI-1) and differentiated PBMCs-macrophages was established, and functional studies in vitro and in vivo was performed to explore the interaction between cancer cells and M2 macrophages. Furthermore, we established the cationic liposome-mediated co-delivery of gemcitabine and aPKCɩ-siRNA and detect the antitumor effects in CCA. Results M2 macrophage showed tumor-promoting properties in CCA. High levels of aPKCɩ expression and M2 macrophage infiltration were associated with metastasis and poor prognosis in CCA patients. Moreover, CCA patients with low M2 macrophages infiltration or low aPKCɩ expression benefited from postoperative gemcitabine-based chemotherapy. Further studies showed that M2 macrophages-derived TGFβ1 induced epithelial-mesenchymal transition (EMT) and gemcitabine resistance in CCA cells through aPKCɩ-mediated NF-κB signaling pathway. Reciprocally, CCL5 was secreted more by CCA cells undergoing aPKCɩ-induced EMT and consequently modulated macrophage recruitment and polarization. Furthermore, the cationic liposome-mediated co-delivery of GEM and aPKCɩ-siRNA significantly inhibited macrophages infiltration and CCA progression. Conclusion our study demonstrates the role of Macrophages-aPKCɩ-CCL5 Feedback Loop in CCA, and proposes a novel therapeutic strategy of aPKCɩ-siRNA and GEM co-delivered by liposomes for CCA.


Author(s):  
Jingjing Zhang ◽  
Yun Li ◽  
Hua Liu ◽  
Jiahui Zhang ◽  
Jie Wang ◽  
...  

Abstract Background The development of lethal cancer metastasis depends on the dynamic interactions between cancer cells and the tumor microenvironment, both of which are embedded in the extracellular matrix (ECM). The acquisition of resistance to detachment-induced apoptosis, also known as anoikis, is a critical step in the metastatic cascade. Thus, a more in-depth and systematic analysis is needed to identify the key drivers of anoikis resistance. Methods Genome-wide CRISPR/Cas9 knockout screen was used to identify critical drivers of anoikis resistance using SKOV3 cell line and found protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) as a candidate. Quantitative real-time PCR (qRT-PCR) and immune-histochemistry (IHC) were used to measure differentially expressed PCMT1 in primary tissues and metastatic cancer tissues. PCMT1 knockdown/knockout and overexpression were performed to investigate the functional role of PCMT1 in vitro and in vivo. The expression and regulation of PCMT1 and integrin-FAK-Src pathway were evaluated using immunoprecipitation followed by mass spectrometry (IP-MS), western blot analysis and live cell imaging. Results We found that PCMT1 enhanced cell migration, adhesion, and spheroid formation in vitro. Interestingly, PCMT1 was released from ovarian cancer cells, and interacted with the ECM protein LAMB3, which binds to integrin and activates FAK-Src signaling to promote cancer progression. Strikingly, treatment with an antibody against extracellular PCMT1 effectively reduced ovarian cancer cell invasion and adhesion. Our in vivo results indicated that overexpression of PCMT1 led to increased ascites formation and distant metastasis, whereas knockout of PCMT1 had the opposite effect. Importantly, PCMT1 was highly expressed in late-stage metastatic tumors compared to early-stage primary tumors. Conclusions Through systematically identifying the drivers of anoikis resistance, we uncovered the contribution of PCMT1 to focal adhesion (FA) dynamics as well as cancer metastasis. Our study suggested that PCMT1 has the potential to be a therapeutic target in metastatic ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document