scholarly journals PV array connected to the grid with the implementation of MPPT algorithms (INC, P&O and FL Method)

Author(s):  
Oumnia Lagdani ◽  
Mourad Trihi ◽  
Badre Bossoufi

The purpose of this article is to extract the maximum power point at which the photovoltaic system can operate optimally. The system considered is simulated under different irradiations (between 200 W/m<sup>2</sup> and 1000 W/m<sup>2</sup>), it mainly includes the established models of solar PV and MPPT module, a DC/DC boost converter and a DC/AC converter. The most common MPPT techniques that will be studied are: "Perturbation and Observation" (P&amp;O) method, "Incremental Conductance" (INC) method, and "Fuzzy Logic" (FL) control. Simulation results obtained using MATLAB/Simulink are analyzed and compared to evaluate the performance of each of the three techniques.


Author(s):  
Doaa M. Atia ◽  
Hanaa T. El-madany

It is important to have an efficient maximum power point tracking (MPPT) technique to increase the<em> </em>photovoltaic (PV) generation system output efficiency. This paper presents a design of MPPT techniques for<em> </em>PV module to increase its efficiency. Perturb and Observe method (P&amp;O), incremental conductance method (IC), and Fuzzy logic controller (FLC) techniques are designed to be used for MPPT. Also FLC is built using<em> </em>MATLAB/ SIMULINK and compared with the FLC toolbox existed in the MATLAB library. FLC does not<em> </em>need knowledge of the exact model of the system so it is easy to implement. A comparison between different<em> </em>techniques shows the effectiveness of the fuzzy logic controller techniques.  Finally, the proposed FLC is<em> </em>built in very high speed integrated circuit description language (VHDL). The simulation results obtained with<em> </em>ISE Design Suite 14.6 software show a satisfactory performance with a good agreement compared to obtained values from MATLAB/SIMULINK. The good tracking efficiency and rapid response to environmental parameters changes are adopted by the simulation results.



Author(s):  
Sabitha M ◽  
Dr. K. Ranjith Kumar

In this work, a Fuzzy Logic Control (FLC) based MPPT technique is proposed to improve the performance of a stand-alone solar energy system. The Fuzzy logic controller is used as an intelligent way of tracking the maximum power point (MPP). The Taguchi method is adopted in this study to analyze multiple operating conditions of solar PV array. Solar PV output changes with Atmospheric conditions. The change in PV Current and Power are measured and fed to the Fuzzy logic controller as input. The Fuzzy controller is designed with 25 fuzzy rules and the Mamdani fuzzy inference is performed to obtain the aggregation which will be defuzzified by Center of gravity method. Based on the change in PV Current and Power, the Fuzzy logic controller generate the duty cycle for the boost converter (DC-DC converter). The variation of the duty cycle is from 0 to 1. The signal of change in duty ratio from the Fuzzy logic MPPT algorithm is fed to the PWM for switching the IGBT to dynamically update the duty cycle of the boost converter for extracting the maximum power from the solar PV array. A stand-alone Photovoltaic system with a boost converter is simulated in MATLAB Simulink to demonstrate the results and applicability of the proposed method.



In this paper enhanced adaptive Perturb and Observe maximum power point tracking algorithm is presented for solar PV fed DC-DC to boost converter system. This proposed MPPT algorithm overcome the problem in conventional perturb and observe MPPT technique. The proposed system is modelled in MATLAB Simulink software package. System analyzed with various operating conditions and corresponding results are analyzed. The simulation results were compared with experimental results.



2021 ◽  
pp. 1-10
Author(s):  
Imran Pervez ◽  
Adil Sarwar ◽  
Afroz Alam ◽  
Mohammad ◽  
Ripon K. Chakrabortty ◽  
...  

Due to its clean and abundant availability, solar energy is popular as a source from which to generate electricity. Solar photovoltaic (PV) technology converts sunlight incident on the solar PV panel or array directly into non-linear DC electricity. However, the non-linear nature of the solar panels’ power needs to be tracked for its efficient utilization. The problem of non-linearity becomes more prominent when the solar PV array is shaded, even leading to high power losses and concentrated heating in some areas (hotspot condition) of the PV array. Bypass diodes used to eliminate the shading effect cause multiple peaks of power on the power versus voltage (P-V) curve and make the tracking problem quite complex. Conventional algorithms to track the optimal power point cannot search the complete P-V curve and often become trapped in local optima. More recently, metaheuristic algorithms have been employed for maximum power point tracking. Being stochastic, these algorithms explore the complete search area, thereby eliminating any chance of becoming trapped stuck in local optima. This paper proposes a hybridized version of two metaheuristic algorithms, Radial Movement Optimization and teaching-learning based optimization (RMOTLBO). The algorithm has been discussed in detail and applied to multiple shading patterns in a solar PV generation system. It successfully tracks the maximum power point (MPP) in a lesser amount of time and lesser fluctuations.



2014 ◽  
Vol 1008-1009 ◽  
pp. 63-67
Author(s):  
Jia Yuan ◽  
Yu Jiang Wang ◽  
Jing Hong Cui ◽  
Hui Li Zheng ◽  
Liu Bin ◽  
...  

In order to use photovoltaic cell effectively and improve its photoelectric conversion efficiency, the maximum power point of photovoltaic generation system should be tracked rapidly and stably [1]. Taking into account the solar PV systems are often affected by external factors,it is difficult to determine system parameters, and has a strong non-linear,so this paper,a adaptive fuzzy logic control technology for STP0950S-36 type of independent photovoltaic systems to a adaptive fuzzy controller design method, and using MATLAB/SIMULINK,fuzzy logic toolbox for simulation tools such as maximum power point control,adaptive fuzzy control simulation results of MPPT with fixed step method compared to fixed-step method was found to reach steady there is a certain state after the fluctuation,The results show that the method can quickly and correctly track change of MPP in different light intensity and the system has excellent stability performance.



Sign in / Sign up

Export Citation Format

Share Document