An MPPT method using hybrid radial movement optimization with teaching-learning based optimization under fluctuating atmospheric conditions

2021 ◽  
pp. 1-10
Author(s):  
Imran Pervez ◽  
Adil Sarwar ◽  
Afroz Alam ◽  
Mohammad ◽  
Ripon K. Chakrabortty ◽  
...  

Due to its clean and abundant availability, solar energy is popular as a source from which to generate electricity. Solar photovoltaic (PV) technology converts sunlight incident on the solar PV panel or array directly into non-linear DC electricity. However, the non-linear nature of the solar panels’ power needs to be tracked for its efficient utilization. The problem of non-linearity becomes more prominent when the solar PV array is shaded, even leading to high power losses and concentrated heating in some areas (hotspot condition) of the PV array. Bypass diodes used to eliminate the shading effect cause multiple peaks of power on the power versus voltage (P-V) curve and make the tracking problem quite complex. Conventional algorithms to track the optimal power point cannot search the complete P-V curve and often become trapped in local optima. More recently, metaheuristic algorithms have been employed for maximum power point tracking. Being stochastic, these algorithms explore the complete search area, thereby eliminating any chance of becoming trapped stuck in local optima. This paper proposes a hybridized version of two metaheuristic algorithms, Radial Movement Optimization and teaching-learning based optimization (RMOTLBO). The algorithm has been discussed in detail and applied to multiple shading patterns in a solar PV generation system. It successfully tracks the maximum power point (MPP) in a lesser amount of time and lesser fluctuations.

2018 ◽  
Vol 7 (2.31) ◽  
pp. 97 ◽  
Author(s):  
M Jayakumar ◽  
V Vanitha ◽  
V Jaisuriya ◽  
M Karthikeyan ◽  
George Daniel ◽  
...  

Solar power is widely available around the globe but efficient transfer of solar power to the load becomes a challenging task. There are various methods in which the power transfer can be done, the following work proposes a method for efficient tracking of solar power.  MPPT [ maximum power point tracking] algorithm applied on three phase voltage source inverter connected to solar PV array with a three phase load. MPPT is applied on inverter rather than conventionally applying MPPT on DC-DC converter. Perturb and Observe method is applied in the MPPT algorithm to find the optimal modulation index for the inverter to transfer maximum power from the panel. Sine pulse width modulation technique is employed for controlling the switching pattern of the inverter. The algorithm is programmed for changing irradiation and temperature condition. The system does not oscillate about the MPP point as the algorithm set the system at MPP and does not vary till a variation in irradiation is sensed.  The proposed system can be installed at all places and will reduce the cost, size and losses compared to conventional system. 


2020 ◽  
Author(s):  
Mohammad junaid Khan

Abstract Backgrounds: Solar photo-voltaic (PV) arrays have non-linear characteristics with distinctive maximum power point (MPP) which relies on ecological conditions such as solar radiation and ambient temperature. In order to obtain continuous maximum power (MP) from PV arrays under varying ecological conditions, maximum power point tracking (MPPT) control methods are employed. MPPT is utilized to extract MP from the solar PV array, high-performance soft computing techniques can be used as an MPPT technique. Results: In order to show the feasibility and performance of the proposed Artificial Intelligence based Perturbe and Observe (AIAPO) MPPT controller, a simulation analysis has been carried out using the PV system. Combined results with different MPPT systems for power, voltage and current waveforms are the output values increase to 272.4W, 157V and 1.74A respectively. Using proposed AIAPO MPPT provides more accurate and stable result as compared to Perturbe and Observe (PO), Fuzzy Logic (FL) and Artificial Neural Network (ANN) based MPPT Technique. As per the experimentation performed by various MPPT techniques are carried out for PV system which are clearly indicating that the comparative analysis of power, voltage and current performance of PV system (i.e. have been recorded 272.4W, 157V and 1.74A) using proposed MPPT method which is better than the PO based MPPT (i.e. 169.1W, 127V, 1.43A), FL based MPPT technique (i.e. 256.9W, 152V, 1.69A) and ANN based MPPT technique (i.e. 265W, 154V, 1.71A) correspondingly. Conclusions: The aim of this paper is to track MPP from the solar PV array by the proposed hybrid controller for irradiation changes and comparing results with PO, FL and ANN based MPPT controllers. Different MPPT techniques have been used to compute MPP and improved efficiency of the PV panel. AIAPO, ANN, FL and PO MPPT methods have been chosen to obtain this objective. Simulation results showing that the system in which proposed control method has been used gives better performance and reduce fluctuations of the MPP as compared to PO, FL and ANN based MPPT technique at rapid changes of irradiation. In order to fabricate a reliable and real time hybrid system, there is a massive scope of research to develop multi-input renewable energy systems.


Sign in / Sign up

Export Citation Format

Share Document