Optimal Placement and Sizing of Distributed Generation Units Using Co-Evolutionary Particle Swarm Optimization Algorithms

Author(s):  
Alireza Kaviani-Arani
Author(s):  
Eshan Karunarathne ◽  
Jagadeesh Pasupuleti ◽  
Janaka Ekanayake ◽  
Dilini Almeida

With the technological advancements, Distributed Generation (DG) has become a common method of overwhelming the issues like power losses and voltage drops which accompanies with the leaf of the feeders of radial distribution networks. Many researchers have used several optimization techniques and tools which could be used to locate and size the DG units in the system. Particle Swarm Optimization (PSO) is one of the famous optimization techniques. However, the premature convergence is identified as a fundamental adverse effect of this optimization technique. Therefore, the optimization problem can direct the objective function to a local minimum. This paper presents a variant of PSO techniques, “Comprehensive Learning Particle Swarm Optimization (CLPSO)” to determine the optimal placement and sizing of the DGs, which uses a novel learning strategy whereby all other particles’ historical best information and learning probability value are used to update a particle’s velocity. The CLPSO particles learn from one exampler for few iterations, instead of learing from global and personal best values in every iteration in PSO and this technique retains the swarm's variability to avoid premature convergence. A detailed analysis was conducted for the IEEE 33 bus system. The comparison results have revealed a higher convergence and an accuracy than the PSO.


Author(s):  
Mahesh Kumar ◽  
Perumal Nallagownden ◽  
Irraivan Elamvazuthi ◽  
Pandian Vasant

The electricity demand, fossil fuel depletion and environment issues increase the interest of power engineers to integrate small power generations i.e. called distributed generation (DGs) in the distribution system. The DG in distribution system has many positive effects such as it reduces the system power losses, improves the voltage profile and strengthen the voltage stability etc. The placement and sizing of DG play a major role in optimizing these parameters. Therefore, this chapter proposes a modified Particle Swarm Optimization (PSO) algorithm for finding the optimal placement and sizing of distributed generation in the radial distribution system. Two types of DGs such as an active power and reactive power DGs are tested on standard IEEE 33 radial bus system. Moreover, it can be realized that proposed method gives very effective results when both of active and reactive power DGs are integrated into the distribution system.


Sign in / Sign up

Export Citation Format

Share Document