scholarly journals Low efficiency of β-alanine supplementation to increase muscle carnosine

2020 ◽  
Vol 34 (3) ◽  
pp. 357-364
Author(s):  
Pedro Henrique Perim ◽  
André Barroso Heibel ◽  
Guilherme Giannini Artioli ◽  
Bruno Gualano ◽  
Bryan Saunders

Supplementation with β-alanine (BA) increases muscle carnosine content, although the amount of BA used for muscle carnosine loading has been suggested to be low. However, methodological issues may have underestimated the amount of BA used. The aim of this study was to determine the estimated amount of BA converted to muscle carnosine, using a retrospective analysis from a 4-week randomized controlled trial investigating the effects of BA supplementation on muscle carnosine content of the m. vastus lateralis. Twenty-five males (age 27±5 years, height 1.74±0.09 m, body mass 77.4±11.5 kg) were supplemented with 6.4 g·day-1 of BA (N=17) or placebo (PL; N=8) for 28 days. Pre- and postsupplementation participants provided a muscle biopsy subsequently analysed for carnosine content using HPLC. Data were analysed using mixed-models and Pearson’s correlations. Muscle carnosine content increased by +11.0±6.7 mmol·kg-1dm (P<0.0001) in BA, with no change in PL (P=0.99). The estimated amount of BA converted to muscle carnosine was 2.1±1.2% (Range: 0.5 to 4.5%) of the total dose ingested. Pearson’s correlations showed that pre-supplementation carnosine was correlated to post-supplementation carnosine in the BA group (r=0.65, r2=0.38, P=0.009), but not the absolute change in carnosine (r=-0.28, r2=0.08, P=0.28) or the amount of BA used (r=-0.31, r2=0.10, P=0.22). The estimated amount of ingested BA used for carnosine synthesis was extremely low following 4 weeks of BA supplementation at 6.4 g·day-1. Data suggest that very little of the BA ingested is used for muscle carnosine synthesis and highlights the potential for further work to optimise BA supplementation in humans.

2020 ◽  
Vol 34 (3) ◽  
pp. 357-364
Author(s):  
Pedro Henrique Perim ◽  
André Barroso Heibel ◽  
Guilherme Giannini Artioli ◽  
Bruno Gualano ◽  
Bryan Saunders

Supplementation with β-alanine (BA) increases muscle carnosine content, although the amount of BA used for muscle carnosine loading has been suggested to be low. However, methodological issues may have underestimated the amount of BA used. The aim of this study was to determine the estimated amount of BA converted to muscle carnosine, using a retrospective analysis from a 4-week randomized controlled trial investigating the effects of BA supplementation on muscle carnosine content of the m. vastus lateralis. Twenty-five males (age 27±5 years, height 1.74±0.09 m, body mass 77.4±11.5 kg) were supplemented with 6.4 g·day-1 of BA (N=17) or placebo (PL; N=8) for 28 days. Pre- and postsupplementation participants provided a muscle biopsy subsequently analysed for carnosine content using HPLC. Data were analysed using mixed-models and Pearson’s correlations. Muscle carnosine content increased by +11.0±6.7 mmol·kg-1dm (P<0.0001) in BA, with no change in PL (P=0.99). The estimated amount of BA converted to muscle carnosine was 2.1±1.2% (Range: 0.5 to 4.5%) of the total dose ingested. Pearson’s correlations showed that pre-supplementation carnosine was correlated to post-supplementation carnosine in the BA group (r=0.65, r2=0.38, P=0.009), but not the absolute change in carnosine (r=-0.28, r2=0.08, P=0.28) or the amount of BA used (r=-0.31, r2=0.10, P=0.22). The estimated amount of ingested BA used for carnosine synthesis was extremely low following 4 weeks of BA supplementation at 6.4 g·day-1. Data suggest that very little of the BA ingested is used for muscle carnosine synthesis and highlights the potential for further work to optimise BA supplementation in humans.


2014 ◽  
Vol 61 (6) ◽  
pp. 1049-1054 ◽  
Author(s):  
Oluwakemi Badaki-Makun ◽  
J. Paul Scott ◽  
Julie A. Panepinto ◽  
T. Charles Casper ◽  
Cheryl A. Hillery ◽  
...  

2006 ◽  
Vol 36 (1) ◽  
Author(s):  
Barnett S. Meyers ◽  
Catherine Peasley-Miklus ◽  
Alastair J. Flint ◽  
Benoit H. Mulsant ◽  
Anthony J. Rothschild

2020 ◽  
Vol 29 (1S) ◽  
pp. 412-424
Author(s):  
Elissa L. Conlon ◽  
Emily J. Braun ◽  
Edna M. Babbitt ◽  
Leora R. Cherney

Purpose This study reports on the treatment fidelity procedures implemented during a 5-year randomized controlled trial comparing intensive and distributed comprehensive aphasia therapy. Specifically, the results of 1 treatment, verb network strengthening treatment (VNeST), are examined. Method Eight participants were recruited for each of 7 consecutive cohorts for a total of 56 participants. Participants completed 60 hr of aphasia therapy, including 15 hr of VNeST. Two experienced speech-language pathologists delivered the treatment. To promote treatment fidelity, the study team developed a detailed manual of procedures and fidelity checklists, completed role plays to standardize treatment administration, and video-recorded all treatment sessions for review. To assess protocol adherence during treatment delivery, trained research assistants not involved in the treatment reviewed video recordings of a subset of randomly selected VNeST treatment sessions and completed the fidelity checklists. This process was completed for 32 participants representing 2 early cohorts and 2 later cohorts, which allowed for measurement of protocol adherence over time. Percent accuracy of protocol adherence was calculated across clinicians, cohorts, and study condition (intensive vs. distributed therapy). Results The fidelity procedures were sufficient to promote and verify a high level of adherence to the treatment protocol across clinicians, cohorts, and study condition. Conclusion Treatment fidelity strategies and monitoring are feasible when incorporated into the study design. Treatment fidelity monitoring should be completed at regular intervals during the course of a study to ensure that high levels of protocol adherence are maintained over time and across conditions.


2019 ◽  
Vol 62 (12) ◽  
pp. 4464-4482 ◽  
Author(s):  
Diane L. Kendall ◽  
Megan Oelke Moldestad ◽  
Wesley Allen ◽  
Janaki Torrence ◽  
Stephen E. Nadeau

Purpose The ultimate goal of anomia treatment should be to achieve gains in exemplars trained in the therapy session, as well as generalization to untrained exemplars and contexts. The purpose of this study was to test the efficacy of phonomotor treatment, a treatment focusing on enhancement of phonological sequence knowledge, against semantic feature analysis (SFA), a lexical-semantic therapy that focuses on enhancement of semantic knowledge and is well known and commonly used to treat anomia in aphasia. Method In a between-groups randomized controlled trial, 58 persons with aphasia characterized by anomia and phonological dysfunction were randomized to receive 56–60 hr of intensively delivered treatment over 6 weeks with testing pretreatment, posttreatment, and 3 months posttreatment termination. Results There was no significant between-groups difference on the primary outcome measure (untrained nouns phonologically and semantically unrelated to each treatment) at 3 months posttreatment. Significant within-group immediately posttreatment acquisition effects for confrontation naming and response latency were observed for both groups. Treatment-specific generalization effects for confrontation naming were observed for both groups immediately and 3 months posttreatment; a significant decrease in response latency was observed at both time points for the SFA group only. Finally, significant within-group differences on the Comprehensive Aphasia Test–Disability Questionnaire ( Swinburn, Porter, & Howard, 2004 ) were observed both immediately and 3 months posttreatment for the SFA group, and significant within-group differences on the Functional Outcome Questionnaire ( Glueckauf et al., 2003 ) were found for both treatment groups 3 months posttreatment. Discussion Our results are consistent with those of prior studies that have shown that SFA treatment and phonomotor treatment generalize to untrained words that share features (semantic or phonological sequence, respectively) with the training set. However, they show that there is no significant generalization to untrained words that do not share semantic features or phonological sequence features.


Sign in / Sign up

Export Citation Format

Share Document