scholarly journals Automated Recognition of Regional Wall Motion Abnormalities Through Deep Neural Network Interpretation of Transthoracic Echocardiography

Circulation ◽  
2020 ◽  
Vol 142 (16) ◽  
pp. 1510-1520 ◽  
Author(s):  
Mu-Shiang Huang ◽  
Chi-Shiang Wang ◽  
Jung-Hsien Chiang ◽  
Ping-Yen Liu ◽  
Wei-Chuan Tsai

Background: Automated interpretation of echocardiography by deep neural networks could support clinical reporting and improve efficiency. Whereas previous studies have evaluated spatial relationships using still frame images, we aimed to train and test a deep neural network for video analysis by combining spatial and temporal information, to automate the recognition of left ventricular regional wall motion abnormalities. Methods: We collected a series of transthoracic echocardiography examinations performed between July 2017 and April 2018 in 2 tertiary care hospitals. Regional wall abnormalities were defined by experienced physiologists and confirmed by trained cardiologists. First, we developed a 3-dimensional convolutional neural network model for view selection ensuring stringent image quality control. Second, a U-net model segmented images to annotate the location of each left ventricular wall. Third, a final 3-dimensional convolutional neural network model evaluated echocardiographic videos from 4 standard views, before and after segmentation, and calculated a wall motion abnormality confidence level (0–1) for each segment. To evaluate model stability, we performed 5-fold cross-validation and external validation. Results: In a series of 10 638 echocardiograms, our view selection model identified 6454 (61%) examinations with sufficient image quality in all standard views. In this training set, 2740 frames were annotated to develop the segmentation model, which achieved a Dice similarity coefficient of 0.756. External validation was performed in 1756 examinations from an independent hospital. A regional wall motion abnormality was observed in 8.9% and 4.9% in the training and external validation datasets, respectively. The final model recognized regional wall motion abnormalities in the cross-validation and external validation datasets with an area under the receiver operating characteristic curve of 0.912 (95% CI, 0.896–0.928) and 0.891 (95% CI, 0.834–0.948), respectively. In the external validation dataset, the sensitivity was 81.8% (95% CI, 73.8%–88.2%), and specificity was 81.6% (95% CI, 80.4%–82.8%). Conclusions: In echocardiographic examinations of sufficient image quality, it is feasible for deep neural networks to automate the recognition of regional wall motion abnormalities using temporal and spatial information from moving images. Further investigation is required to optimize model performance and evaluate clinical applications.

ESC CardioMed ◽  
2018 ◽  
pp. 435-438
Author(s):  
Anastasia Vamvakidou ◽  
Roxy Senior

The major requirement for optimal echocardiographic image interpretation, reproducibility, and diagnostic accuracy is image quality. Despite the use of harmonics, a significant proportion of patients have challenging images, which has an impact on diagnosis and management. The ultrasound contrast agents (UCAs), which are administered intravenously, have been a significant development in image quality optimization and have proved to be an important aid in the assessment of structural abnormalities, detection of regional wall motion abnormalities, and calculation of left ventricular ejection fraction. The use of UCAs is also of critical importance for the detection of ischaemia and the assessment of significant coronary artery disease through detection of inducible regional wall motion abnormalities during stress echocardiography. UCAs can also assess myocardial perfusion, which improves assessment of myocardial ischaemia during stress echocardiography. Similarly the simultaneous assessment of wall motion and perfusion improves assessment of viable myocardium in patients with left ventricular dysfunction. As the use of UCAs results in increased feasibility, reproducibility, and diagnostic and prognostic accuracy of echocardiography including cost-efficiency, both European and American guidelines endorse its use in clinical cardiology.


2018 ◽  
Vol 8 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Giancarla Scalone ◽  
Giampaolo Niccoli ◽  
Filippo Crea

Myocardial infarction with non-obstructive coronary arteries (MINOCA) is a syndrome with different causes, characterised by clinical evidence of myocardial infarction with normal or near-normal coronary arteries on angiography. Its prevalence ranges between 5% and 25% of all myocardial infarction. The prognosis is extremely variable, depending on the cause of MINOCA. The key principle in the management of this syndrome is to clarify the underlying individual mechanisms to achieve patient-specific treatments. Clinical history, electrocardiogram, cardiac enzymes, echocardiography, coronary angiography and left ventricular angiography represent the first level diagnostic investigations to identify the causes of MINOCA. Regional wall motion abnormalities at left ventricular angiography limited to a single epicardial coronary artery territory identify an ‘epicardial pattern’whereas regional wall motion abnormalities extended beyond a single epicardial coronary artery territory identify a ‘microvascular pattern’. The most common causes of MINOCA are represented by coronary plaque disease, coronary dissection, coronary artery spasm, coronary microvascular spasm, Takotsubo cardiomyopathy, myocarditis, coronary thromboembolism, other forms of type 2 myocardial infarction and MINOCA of uncertain aetiology. This review aims at summarising the diagnosis and management of MINOCA, according to the underlying physiopathology.


2006 ◽  
Vol 4 (3) ◽  
pp. 199-205 ◽  
Author(s):  
Avinash Kothavale ◽  
Nader M. Banki ◽  
Alexander Kopelnik ◽  
Sirisha Yarlagadda ◽  
Michael T. Lawton ◽  
...  

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M S Huang ◽  
M R Tsai

Abstract Background The deep neural network assisted in automated echocardiography interpretation joint to cardiologist final confirmation has now been gradually emerging. There were applications applied in echocardiography views classification, chamber size and myocardium mass evaluation, and certain disease detections already published. Our aim, instead of frame-by-frame “image-level” interpretation in previous studies, is to apply deep neural network in echocardiography temporal relationship analysis – “video-level” – and applied in automated left ventricle myocardium regional wall motion abnormalities recognition. Methods We collected all echocardiography performed in 2017, and preprocessed them into numeric arrays for matrix computations. Regional wall motion abnormalities were approved by authorized cardiologists, and processed into labels whether regional wall motion abnormalities presented in anterior, inferior, septal, or lateral walls of the left ventricle, as the ground truth. We then first developed a convolutional neural network (CNN) model to do view selection, and gathered parasternal long/short views, and apical four/two chamber views from each exam, as well as developing view prediction confidence for strict image quality control. Within these images, we annotated part of images to develop the second CNN model, known as U-net, for image segmentation and mark each regional wall. Finally, we developed the major three-dimensional CNN model with the inputs composed of four views of echocardiography videos and then output the final label for motion abnormalities in each wall. Results In total we collected 13,984 series of echocardiography, and gathered four main views with quality confidence level above 90%, which resulted in 9,323 series for training. Within these images, we annotated 2,736 frames for U-net model and resulted in dice score of segmentation 73%. With the join of segmentation model, the final three-dimensional CNN model predict regional wall motion with accuracy of 83%. Conclusions Deep neural network application in regional wall motion recognition is feasible and should mandate further investigation for promoting performance. Acknowledgement/Funding None


Sign in / Sign up

Export Citation Format

Share Document