Neural Correlates of Levels of Emotional Awareness: Evidence of an Interaction between Emotion and Attention in the Anterior Cingulate Cortex

1998 ◽  
Vol 10 (4) ◽  
pp. 525-535 ◽  
Author(s):  
Richard D. Lane ◽  
Eric M. Reiman ◽  
Beatrice Axelrod ◽  
Lang-Sheng Yun ◽  
Andrew Holmes ◽  
...  

Recent functional imaging studies have begun to identify the neural correlates of emotion in healthy volunteers. However, studies to date have not differentially addressed the brain areas associated with the perception, experience, or expression of emotion during emotional arousal. To explore the neural correlates of emotional experience, we used positron emission tomography (PET) and 15O-water to measure cerebral blood flow (CBF) in 12 healthy women during film- and recall-induced emotion and correlated CBF changes attributable to emotion with subjects' scores on the Levels of Emotional Awareness Scale (LEAS), a measure of individual differences in the capacity to experience emotion in a differentiated and complex way. A conjunction analysis revealed that the correla-tions between LEAS and CBF during film- and recall-induced emotion overlapped significantly (z = 3.74, p < 0.001) in Brod-mann's area 24 of the anterior cingulate cortex (ACC). This finding suggests that individual differences in the ability to accurately detect emotional signals interoceptively or exteroceptively may at least in part be a function of the degree to which the ACC participates in the experiential processing and response to emotion cues. To the extent that this finding is consistent with the functions of the ACC involving attention and response selection, it suggests that this neural correlate of conscious emotional experience is not exclusive to emotion.

NeuroImage ◽  
1998 ◽  
Vol 7 (4) ◽  
pp. S913
Author(s):  
Maria Tillfors Olsson ◽  
Tomas Furmark ◽  
Håkan Fischer ◽  
Jesper Andersson ◽  
Gustav Wik ◽  
...  

1997 ◽  
Vol 77 (3) ◽  
pp. 1313-1324 ◽  
Author(s):  
M. Jueptner ◽  
K. M. Stephan ◽  
C. D. Frith ◽  
D. J. Brooks ◽  
R.S.J. Frackowiak ◽  
...  

Jueptner, M., K. M. Stephan, C. D. Frith, D. J. Brooks, R.S.J. Frackowiak, and R. E. Passingham. Anatomy of motor learning. I. Frontal cortex and attention to action. J. Neurophysiol. 77: 1313–1324, 1997. We used positron emission tomography to study new learning and automatic performance in normal volunteers. Subjects learned sequences of eight finger movements by trial and error. In a previous experiment we showed that the prefrontal cortex was activated during new learning but not during automatic performance. The aim of the present experiment was to see what areas could be reactivated if the subjects performed the prelearned sequence but were required to pay attention to what they were doing. Scans were carried out under four conditions. In the first the subjects performed a prelearned sequence of eight key presses; this sequence was learned before scanning and was practiced until it had become overlearned, so that the subjects were able to perform it automatically. In the second condition the subjects learned a new sequence during scanning. In a third condition the subjects performed the prelearned sequence, but they were required to attend to what they were doing; they were instructed to think about the next movement. The fourth condition was a baseline condition. As in the earlier study, the dorsal prefrontal cortex and anterior cingulate area 32 were activated during new learning, but not during automatic performance. The left dorsal prefrontal cortex and the right anterior cingulate cortex were reactivated when subjects paid attention to the performance of the prelearned sequence compared with automatic performance of the same task. It is suggested that the critical feature was that the subjects were required to attend to the preparation of their responses. However, the dorsal prefrontal cortex and the anterior cingulate cortex were activated more when the subjects learned a new sequence than they were when subjects simply paid attention to a prelearned sequence. New learning differs from the attention condition in that the subjects generated moves, monitored the outcomes, and remembered the responses that had been successful. All these are nonroutine operations to which the subjects must attend. Further analysis is needed to specify which are the nonroutine operations that require the involvement of the dorsal prefrontal and anterior cingulate cortex.


10.1038/13145 ◽  
1999 ◽  
Vol 2 (10) ◽  
pp. 853-854 ◽  
Author(s):  
Edward Awh ◽  
William J. Gehring

1991 ◽  
Vol 3 (3) ◽  
pp. 231-241 ◽  
Author(s):  
Kevin W. Janer ◽  
José V. Pardo

Positron emission tomographic (PET) studies of normal humans undergoing specific cognitive activation paradigms have identified a region of the anterior cingulate cortex as a component of an anterior, midline attentional system involved in high-level processing selection. However, deficits in attention have not been demonstrated in patients following bilateral anterior cingulotomy, a procedure that results in lesions of adjacent anterior cingulate cortex. Task paradigms used in PET studies that recruit the anterior cingulate cortex were applied to normal, control subjects and to a patient before and after cingulotomy to provide highly sensitive and functionally targeted reaction time measures of attentional performance. In contrast to unchanged performance in several neuropsychological measures, this patient demonstrated specific deficits in attention during the subacute postoperative period, which resolved spontaneously several months after surgery. Such impairment is consistent with the evolving view of the anterior cingulate's involvement in high-level processing selection. These data show the feasibility of using information from PET activation studies of normals in the design of novel chronometric tasks useful for probing abnormalities in specific cognitive operations associated with discrete cortical regions.


10.1038/13224 ◽  
1999 ◽  
Vol 2 (10) ◽  
pp. 920-924 ◽  
Author(s):  
And U. Turken ◽  
Diane Swick

Sign in / Sign up

Export Citation Format

Share Document