Deficits in Selective Attention Following Bilateral Anterior Cingulotomy

1991 ◽  
Vol 3 (3) ◽  
pp. 231-241 ◽  
Author(s):  
Kevin W. Janer ◽  
José V. Pardo

Positron emission tomographic (PET) studies of normal humans undergoing specific cognitive activation paradigms have identified a region of the anterior cingulate cortex as a component of an anterior, midline attentional system involved in high-level processing selection. However, deficits in attention have not been demonstrated in patients following bilateral anterior cingulotomy, a procedure that results in lesions of adjacent anterior cingulate cortex. Task paradigms used in PET studies that recruit the anterior cingulate cortex were applied to normal, control subjects and to a patient before and after cingulotomy to provide highly sensitive and functionally targeted reaction time measures of attentional performance. In contrast to unchanged performance in several neuropsychological measures, this patient demonstrated specific deficits in attention during the subacute postoperative period, which resolved spontaneously several months after surgery. Such impairment is consistent with the evolving view of the anterior cingulate's involvement in high-level processing selection. These data show the feasibility of using information from PET activation studies of normals in the design of novel chronometric tasks useful for probing abnormalities in specific cognitive operations associated with discrete cortical regions.

1997 ◽  
Vol 77 (3) ◽  
pp. 1313-1324 ◽  
Author(s):  
M. Jueptner ◽  
K. M. Stephan ◽  
C. D. Frith ◽  
D. J. Brooks ◽  
R.S.J. Frackowiak ◽  
...  

Jueptner, M., K. M. Stephan, C. D. Frith, D. J. Brooks, R.S.J. Frackowiak, and R. E. Passingham. Anatomy of motor learning. I. Frontal cortex and attention to action. J. Neurophysiol. 77: 1313–1324, 1997. We used positron emission tomography to study new learning and automatic performance in normal volunteers. Subjects learned sequences of eight finger movements by trial and error. In a previous experiment we showed that the prefrontal cortex was activated during new learning but not during automatic performance. The aim of the present experiment was to see what areas could be reactivated if the subjects performed the prelearned sequence but were required to pay attention to what they were doing. Scans were carried out under four conditions. In the first the subjects performed a prelearned sequence of eight key presses; this sequence was learned before scanning and was practiced until it had become overlearned, so that the subjects were able to perform it automatically. In the second condition the subjects learned a new sequence during scanning. In a third condition the subjects performed the prelearned sequence, but they were required to attend to what they were doing; they were instructed to think about the next movement. The fourth condition was a baseline condition. As in the earlier study, the dorsal prefrontal cortex and anterior cingulate area 32 were activated during new learning, but not during automatic performance. The left dorsal prefrontal cortex and the right anterior cingulate cortex were reactivated when subjects paid attention to the performance of the prelearned sequence compared with automatic performance of the same task. It is suggested that the critical feature was that the subjects were required to attend to the preparation of their responses. However, the dorsal prefrontal cortex and the anterior cingulate cortex were activated more when the subjects learned a new sequence than they were when subjects simply paid attention to a prelearned sequence. New learning differs from the attention condition in that the subjects generated moves, monitored the outcomes, and remembered the responses that had been successful. All these are nonroutine operations to which the subjects must attend. Further analysis is needed to specify which are the nonroutine operations that require the involvement of the dorsal prefrontal and anterior cingulate cortex.


2000 ◽  
Vol 8 (2) ◽  
pp. 1-6
Author(s):  
Karen D. Davis ◽  
Ethan Taub ◽  
Frank Duffner ◽  
Andres M. Lozano ◽  
Ronald R. Tasker ◽  
...  

Object Deep brain stimulation (DBS) of the sensory thalamus has been used to treat chronic, intractable pain. The goal of this study was to investigate the thalamocortical pathways activated during thalamic DBS. Methods The authors compared positron emission tomography (PET) images obtained before, during, and after DBS in five patients with chronic pain. Two of the five patients reported significant DBS-induced pain relief during PET scanning, and the remaining three patients did not report any analgesic effect of DBS during scanning. The most robust effect associated with DBS was activation of the anterior cingulate cortex (ACC). An anterior ACC activation was sustained throughout the 40 minutes of DBS, whereas a more posteriorly located ACC activation occurred at a delay after onset of DBS, although these activations were not dependent on the degree of pain relief reported during DBS. However, implications specific to the analgesic effect of DBS require further study of a larger, more homogeneous patient population. Additional effects of thalamic DBS were detected in motor-related regions (the globus pallidus, cortical area 4, and the cerebellum) and visual and association cortical areas. Conclusions The authors demonstrate that the ACC is activated during thalamic DBS in patients with chronic pain.


2020 ◽  
Author(s):  
Clay B. Holroyd ◽  
Tom Verguts

Despite continual debate for the past thirty years about the function of anterior cingulate cortex (ACC), its key contribution to neurocognition remains unknown. Here we review computational models that illustrate three core principles of ACC function (related to hierarchy, world models and cost), as well as four constraints on the neural implementation of these principles (related to modularity, binding, encoding and learning and regulation). These observations suggest a role for ACC in hierarchical model-based hierarchical reinforcement learning, which instantiates a mechanism for motivating the execution of high-level plans.


2019 ◽  
Author(s):  
Samantha Ortiz ◽  
Maeson S. Latsko ◽  
Julia L. Fouty ◽  
Sohini Dutta ◽  
Jordan M. Adkins ◽  
...  

AbstractNearly one third of Americans have been afflicted with an anxiety disorder. A common symptom of anxiety disorders is the over generalization of fear across a broad range of contextual cues. We previously found that the anterior cingulate cortex and ventral hippocampus (vHPC) regulate generalized fear. Here, we investigate the functional projections from the ACC and vHPC to the amygdala and their role in governing generalized fear in a preclinical rodent model. A chemogenetic approach (DREADDs) was used to inhibit glutamatergic projections from the ACC or vHPC that terminate within the basolateral amygdala (BLA) at recent (1 day) or remote (28 days) time points after contextually fear conditioning male mice. Inactivating ACC or vHPC projections to the BLA significantly reduced generalized fear to a novel, nonthreatening context but had no effect on fear to the training context. Further, our data indicate that the ACC-BLA circuit supports generalization in a time-independent manner. We also identified for the first time a strictly time-dependent role of the vHPC-BLA circuit in supporting remote generalized contextual fear. Dysfunctional signaling to the amygdala from the ACC or the hippocampus could underlie over-generalized fear responses that are associated with anxiety disorders. Our findings demonstrate that the ACC and vHPC regulate fear expressed in novel, nonthreatening environments via projections to the BLA but do so as a result of training intensity or time, respectively.Significance StatementAnxiety disorders are characterized by a common symptom that promotes overgeneralization of fear in non-threatening environments. Dysregulation of the amygdala, anterior cingulate cortex (ACC), or hippocampus has been hypothesized to contribute to increased fear associated with anxiety disorders. Our findings show that the ACC and HPC projections to the basolateral amygdala regulate generalized fear in non-threatening, environments. However, descending ACC projections control fear generalization independent of time, whereas HPC projections play a strictly time-dependent role in regulating generalized fear. Thus, dysfunctional ACC/HPC signaling to the BLA may be a predominant underlying mechanism of non-specific fear associated with anxiety disorders. Our data have important implications for predictions made by theories about aging memories and interactions between the hippocampus and cortical regions.


2019 ◽  
Vol 316 (5) ◽  
pp. G615-G622
Author(s):  
Patrick Sanvanson ◽  
Zhixin Li ◽  
Ling Mei ◽  
Venelin Kounev ◽  
Mark Kern ◽  
...  

Esophageal acid sensory signals are transmitted by both vagal and spinal pathways to the cerebral cortex. The influence and interplay of these pathways on esophageal acid-related functional connectivity has been elusive. Our aim was to evaluate the esophageal acid exposure-related effect on the anterior cingulate cortex (ACC) functional connectivity networks using functional MRI-guided functional connectivity MRI (fcMRI) analysis. We studied six Sprague-Dawley rats for fcMRI experiments under dexmedetomidine hydrochloride anesthesia. Each rat was scanned for 6 min before and after esophageal hydrochloric acid infusion (0.1 N, 0.2 ml/min). The protocol was repeated before and after bilateral cervical vagotomy on the same rat. Seed-based fcMRI analysis was used to examine ACC networks and acid-induced network alterations. Three-factor repeated-measures ANOVA analysis among all four subgroups revealed that the interaction of acid infusion and bilateral vagotomy was mainly detected in the hypothalamus, insula, left secondary somatosensory cortex, left parietal cortex, and right thalamus in the left ACC network. In the right ACC network, this interaction effect was detected in the caudate putamen, insula, motor, primary somatosensory cortex, secondary somatosensory cortex, and thalamic regions. These regions in the ACC networks showed decreased intranetwork connectivity due to acid infusion. However, after bilateral vagotomy, intranetwork connectivity strength inversed and became stronger following postvagotomy acid infusion. Signals transmitted through both the vagal nerve and spinal nerves play a role in esophageal acid-related functional connectivity of the ACC. The vagal signals appear to dampen the acid sensation-related functional connectivity of the ACC networks. NEW & NOTEWORTHY These studies show that esophageal acid-induced brain functional connectivity changes are vagally mediated and suggest that signals transmitted through both the vagal nerve and spinal nerves play a role in esophageal acid-related functional connectivity of the anterior cingulate cortex. This paper focuses on the development of a novel rat functional MRI model fostering improved understanding of acid-related esophageal disorders.


1996 ◽  
Vol 351 (1346) ◽  
pp. 1473-1479 ◽  

The paper considers the question of why subjects are poor at performing two tasks simultaneously if both require attention. It is shown using positron emission tomography (PET) that during new learning of a motor sequence task the prefrontal and anterior cingulate cortex are extensively activated, but that they are no longer activated when a motor sequence has been practiced for an hour until it is automatic. It is also shown that early in motor learning there is interference if subjects are required to generate verbs at the same time, but that the interference is much less if they are required to do this late in motor learning. The prefrontal and anterior cingulate cortex are activated during verb generation. It is therefore suggested that the interference occurs centrally, and that it occurs in either prefrontal or anterior cingulate cortex.


1998 ◽  
Vol 10 (4) ◽  
pp. 525-535 ◽  
Author(s):  
Richard D. Lane ◽  
Eric M. Reiman ◽  
Beatrice Axelrod ◽  
Lang-Sheng Yun ◽  
Andrew Holmes ◽  
...  

Recent functional imaging studies have begun to identify the neural correlates of emotion in healthy volunteers. However, studies to date have not differentially addressed the brain areas associated with the perception, experience, or expression of emotion during emotional arousal. To explore the neural correlates of emotional experience, we used positron emission tomography (PET) and 15O-water to measure cerebral blood flow (CBF) in 12 healthy women during film- and recall-induced emotion and correlated CBF changes attributable to emotion with subjects' scores on the Levels of Emotional Awareness Scale (LEAS), a measure of individual differences in the capacity to experience emotion in a differentiated and complex way. A conjunction analysis revealed that the correla-tions between LEAS and CBF during film- and recall-induced emotion overlapped significantly (z = 3.74, p < 0.001) in Brod-mann's area 24 of the anterior cingulate cortex (ACC). This finding suggests that individual differences in the ability to accurately detect emotional signals interoceptively or exteroceptively may at least in part be a function of the degree to which the ACC participates in the experiential processing and response to emotion cues. To the extent that this finding is consistent with the functions of the ACC involving attention and response selection, it suggests that this neural correlate of conscious emotional experience is not exclusive to emotion.


2021 ◽  
pp. 1-10
Author(s):  
Megan E. Monko ◽  
Sarah R. Heilbronner

Abstract Previous studies of the retrosplenial cortex (RSC) have focused on its role in navigation and memory, consistent with its well-established medial temporal connections, but recent evidence also suggests a role for this region in reward and decision making. Because function is determined largely by anatomical connections, and to better understand the anatomy of RSC, we used tract-tracing methods to examine the anatomical connectivity between the rat RSC and frontostriatal networks (canonical reward and decision-making circuits). We find that, among frontal cortical regions, RSC bidirectionally connects most strongly with the anterior cingulate cortex, but also with an area of the central–medial orbito-frontal cortex. RSC projects to the dorsomedial striatum, and its terminal fields are virtually encompassed by the frontal-striatal projection zone, suggestive of functional convergence through the basal ganglia. This overlap is driven by anterior cingulate cortex, prelimbic cortex, and orbito-frontal cortex, all of which contribute to goal-directed decision making, suggesting that the RSC is involved in similar processes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Seng Bum Michael Yoo ◽  
Jiaxin Cindy Tu ◽  
Benjamin Yost Hayden

AbstractSuccessful pursuit and evasion require rapid and precise coordination of navigation with adaptive motor control. We hypothesize that the dorsal anterior cingulate cortex (dACC), which communicates bidirectionally with both the hippocampal complex and premotor/motor areas, would serve a mapping role in this process. We recorded responses of dACC ensembles in two macaques performing a joystick-controlled continuous pursuit/evasion task. We find that dACC carries two sets of signals, (1) world-centric variables that together form a representation of the position and velocity of all relevant agents (self, prey, and predator) in the virtual world, and (2) avatar-centric variables, i.e. self-prey distance and angle. Both sets of variables are multiplexed within an overlapping set of neurons. Our results suggest that dACC may contribute to pursuit and evasion by computing and continuously updating a multicentric representation of the unfolding task state, and support the hypothesis that it plays a high-level abstract role in the control of behavior.


Sign in / Sign up

Export Citation Format

Share Document