Alvin E. Rodin, Oslerian Pathology: An Assessment and Annotated Atlas of Museum Specimens. Lawrence, Kansas, Coronado Press, 1981, xviii, 250 pp., illus., cloth, U.S. $25.-.

Keyword(s):  
2021 ◽  
Author(s):  
Christoph Mayer ◽  
Lars Dietz ◽  
Elsa Call ◽  
Sandra Kukowka ◽  
Sebastian Martin ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 147
Author(s):  
Mariana Villegas ◽  
Catherine Soos ◽  
Gustavo Jiménez-Uzcátegui ◽  
Shukri Matan ◽  
Keith A. Hobson

Darwin’s finches are a classic example of adaptive radiation involving differential use of dietary resources among sympatric species. Here, we apply stable isotope (δ13C, δ15N, and δ2H) analyses of feathers to examine ecological segregation among eight Darwin’s finch species in Santa Cruz Island, Galápagos collected from live birds and museum specimens (1962–2019). We found that δ13C values were higher for the granivorous and herbivorous foraging guilds, and lower for the insectivorous finches. Values of δ15N were similar among foraging guilds but values of δ2H were higher for insectivores, followed by granivores, and lowest for herbivores. The herbivorous guild generally occupied the largest isotopic standard ellipse areas for all isotopic combinations and the insectivorous guild the smallest. Values of δ2H provided better trophic discrimination than those of δ15N possibly due to confounding influences of agricultural inputs of nitrogen. Segregation among guilds was enhanced by portraying guilds in three-dimensional isotope (δ13C, δ15N, and δ2H) space. Values of δ13C and δ15N were higher for feathers of museum specimens than for live birds. We provide evidence that Darwin’s finches on Santa Cruz Island tend to be generalists with overlapping isotopic niches and suggest that dietary overlap may also be more considerable than previously thought.


Author(s):  
Stella C. Yuan ◽  
Eric Malekos ◽  
Melissa T. R. Hawkins

AbstractThe use of museum specimens held in natural history repositories for population and conservation genetic research is increasing in tandem with the use of massively parallel sequencing technologies. Short Tandem Repeats (STRs), or microsatellite loci, are commonly used genetic markers in wildlife and population genetic studies. However, they traditionally suffered from a host of issues including length homoplasy, high costs, low throughput, and difficulties in reproducibility across laboratories. Massively parallel sequencing technologies can address these problems, but the incorporation of museum specimen derived DNA suffers from significant fragmentation and exogenous DNA contamination. Combatting these issues requires extra measures of stringency in the lab and during data analysis, yet there have not been any high-throughput sequencing studies evaluating microsatellite allelic dropout from museum specimen extracted DNA. In this study, we evaluate genotyping errors derived from mammalian museum skin DNA extracts for previously characterized microsatellites across PCR replicates utilizing high-throughput sequencing. We found it useful to classify samples based on DNA concentration, which determined the rate by which genotypes were accurately recovered. Longer microsatellites performed worse in all museum specimens. Allelic dropout rates across loci were dependent on sample quantity, with high concentration museum specimens performing as well and recovering quality metrics nearly as high as the frozen tissue sample. Based on our results, we provide a set of best practices for quality assurance and incorporation of reliable genotypes from museum specimens.


2020 ◽  
Vol 36 (3) ◽  
pp. 373-379
Author(s):  
Amanda Hay ◽  
Weiwei Xian ◽  
Nicolas Bailly ◽  
Cui Liang ◽  
Daniel Pauly
Keyword(s):  

1988 ◽  
Vol 66 (6) ◽  
pp. 1334-1341
Author(s):  
John Atle Kålås

Data on live birds and previously published data reveal that female Dotterel (Charadrius morinellus) were on average larger than males for all measurements. However, sexual dimorphism on the basis of size appears weaker than expected when Dotterel are compared with closely related monogamous species. Female museum specimens have less disrupted (brighter) plumage colours than males, and dimorphism in plumage is more pronounced than it is in size. A discriminant analysis based on plumage characters did not separate the sexes totally, however. Females moult earlier in the spring than males, but summer plumage is still not fully developed for all females by the first period of pair formation, suggesting that female plumage is most important in reproduction only after the first clutch is complete. No significant differences were evident in wing length and plumage colour between 1882–1917 and 1957–1982. Time–activity studies on the polyandrous Dotterel during the arrival, prelaying, and egg-laying periods showed small differences between the sexes in the amount of time devoted to agonistic and courtship behaviour. Data from prelaying periods showed no difference between the sexes as to who initiates bouts of courtship and agonistic behaviour. The behaviour of paired birds was highly synchronized. Three hypotheses on the slight sexual dimorphism in size and plumage of this polyandrous species are presented and discussed.


2021 ◽  
Vol 17 (5) ◽  
pp. 20210012
Author(s):  
Julian P. Hume ◽  
Christian Robertson

Islands off southern Australia once harboured three subspecies of the mainland emu ( Dromaius novaehollandiae ), the smaller Tasmanian emu ( D. n. diemenensis ) and two dwarf emus, King Island emu ( D. n. minor ) and Kangaroo Island emu ( D. n. baudinianus ), which all became extinct rapidly after discovery by human settlers. Little was recorded about their life histories and only a few historical museum specimens exist, including a number of complete eggs from Tasmania and a unique egg from Kangaroo Island. Here, we present a detailed analysis of eggs of dwarf emus, including the first record of an almost complete specimen from King Island. Our results show that despite the reduction in size of all island emus, especially the King Island emu that averaged 44% smaller than mainland birds, the egg remained similar sized in linear measurements, but less in volume and mass, and seemingly had a slightly thinner eggshell. We provide possible reasons why these phenomena occurred.


Zootaxa ◽  
2018 ◽  
Vol 4512 (1) ◽  
pp. 1
Author(s):  
CHRISTINE M. KAISER ◽  
HINRICH KAISER ◽  
MARK O’SHEA

Since its conceptualization in 1854, 29 species of the colubrid genus Stegonotus have been recognized or described, of which 15 (admiraltiensis, batjanensis, borneensis, cucullatus, derooijae, diehli, florensis, guentheri, iridis, heterurus, melanolabiatus, modestus, muelleri, parvus, poechi) are still considered valid today. Original species descriptions for the members of this genus were published in Dutch, English, French, German, and Italian and, perhaps as a consequence of these polyglot origins, there has been a considerable amount of confusion over which species names should be applied to which populations of Stegonotus throughout its range across Borneo, the Philippines, Wallacea, New Guinea, Australia, and associated archipelagos. In addition, the terminology used to notate characteristics in the descriptions of these forms was not uniform and may have added to the taxonomic confusion. In this paper, we trace in detail the history of the type specimens, the species, and the synonyms currently associated with the genus Stegonotus and provide a basic, species-specific listing of their characteristics, derived from our examination of over 1500 museum specimens. Based on our data, we are able to limit the distribution of S. modestus to the islands of Ambon, Buru, and Seram in the central Moluccas of Indonesian Wallacea. We correct the type locality of S. cucullatus to the Manokwari area on the Bird’s Head Peninsula of West Papua, Indonesian New Guinea and designate a neotype for S. parvus, a species likely to be a regional endemic in the Schouten Archipelago of Cenderawasih Bay (formerly Geelvink Bay), Indonesian New Guinea. We unequivocally identify and explain the problematic localities of the type specimens of S. muelleri and Lycodon muelleri, which currently reside in the same specimen jar. We remove L. aruensis and L. lividum from the synonymy of S. modestus and recognize them as S. aruensis n. comb. and S. lividus n. comb., respectively. We remove S. keyensis and Zamenophis australis from the synonymy of S. cucullatus and recognize them as S. keyensis n. comb. and S. australis n. comb., respectively. We further remove S. reticulatus from the synonymy of S. cucullatus, S. dorsalis from the synonymy of S. diehli, and S. sutteri from the synonymy of S. florensis. We designate lectotypes for S. guentheri, S. heterurus, S. lividus, and S. reticulatus. Lastly, we introduce S. poechi, a valid species not mentioned in the scientific literature since its description in 1924. This brings the diversity in the genus Stegonotus to 22 species. We also caution that in a complex group of organisms like Stegonotus any rush to taxonomic judgment on the basis of molecular and incomplete morphological data sets may perpetuate errors and introduce incongruities. Only through the careful work of connecting type material with museum specimens and molecular data can the taxonomy and nomenclature of complex taxa be stabilized. 


Sign in / Sign up

Export Citation Format

Share Document