monogamous species
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 28)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Andreas Otterbeck ◽  
Andreas Lindén ◽  
Ruslan Gunko ◽  
Eeva Ylinen ◽  
Patrik Byholm

AbstractPhilopatry and monogamy are conventionally viewed as strategies for improving fitness. Many philopatric and monogamous species have, however, been shown to perform breeding dispersal—an exchange of territory (and often also partner) between two breeding seasons. The adaptiveness of breeding dispersal remains controversial, as data remain scarce and sporadic. For the Northern Goshawk, a typically highly philopatric and monogamous forest raptor, pairs breeding in barren forest landscapes produce fewer fledglings than pairs breeding in more productive landscapes. Using data on Finnish breeding female Goshawks (Accipiter gentilis) during 1999–2016, we tested the hypotheses that: (1) breeding dispersal is more likely at barren territories, (2) dispersing females move to less barren territories, and (3) breeding dispersal improves the survival of young. About 29% of the female Goshawks in our study performed breeding dispersal, which contrasts to philopatry and suggest that site and partner fidelities show large variation within the species’ breeding range. We found no evidence that territorial landscape barrenness (proxy on habitat quality) affects the probability of breeding dispersal. However, females that dispersed upgraded to less barren territories. Nevertheless, there were no subsequent effects of breeding dispersal on reproductive performance, suggesting no obvious difference in the capability of rearing young at either site. Although dispersal events were directed to less barren habitats, we suggest that female dispersal is not driven by the pursue for more prospersous habitats, rather that those females are forced to move, for whatever reason. In addition to other observed reasons such as female–female competition for mates and loss of the original mate, intense logging of mature forests lowering local food availability and restricting nest site availability were likely a partial cause of increased breeding dispersal.


2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Francesco Ventura ◽  
José Pedro Granadeiro ◽  
Paul M. Lukacs ◽  
Amanda Kuepfer ◽  
Paulo Catry

In many socially monogamous species, divorce is a strategy used to correct for sub-optimal partnerships and is informed by measures of previous breeding performance. The environment affects the productivity and survival of populations, thus indirectly affecting divorce via changes in demographic rates. However, whether environmental fluctuations directly modulate the prevalence of divorce in a population remains poorly understood. Here, using a longitudinal dataset on the long-lived black-browed albatross ( Thalassarche melanophris ) as a model organism, we test the hypothesis that environmental variability directly affects divorce. We found that divorce rate varied across years (1% to 8%). Individuals were more likely to divorce after breeding failures. However, regardless of previous breeding performance, the probability of divorce was directly affected by the environment, increasing in years with warm sea surface temperature anomalies (SSTA). Furthermore, our state-space models show that warm SSTA increased the probability of switching mates in females in successful relationships. For the first time, to our knowledge, we document the disruptive effects of challenging environmental conditions on the breeding processes of a monogamous population, potentially mediated by higher reproductive costs, changes in phenology and physiological stress. Environmentally driven divorce may therefore represent an overlooked consequence of global change.


2021 ◽  
Vol 61 ◽  
pp. e20216167
Author(s):  
Pedro Diniz ◽  
Carlos Biagolini-Jr.

In the last decade, studies in bird breeding biology have shown that infidelity is prevalent in socially monogamous species. Here, we describe an extra-pair copulation (EPC) event in the Rufous Hornero (Furnarius rufus), a socially monogamous bird with year-round territoriality and low levels of extra-pair paternity. Before the EPC, a within-pair copulation (WPC) occurred inside the pair’s territory. The WPC occurred on the ground and between a banded male (ca. 6 years-old) and an unbanded female. Ten minutes later this breeding pair invaded a neighboring territory, presumably to forage. The territorial male was chased back to its territory by an unbanded male neighbor after being detected. The male neighbor was paired with an unbanded female that did not participate in the aggressive interaction. When flying back to its territory the male neighbor copulated with the territorial female on the ground (ie. EPC). The territorial male flew, vocalized, and perched above the male neighbor, interrupting the EPC. The aggressive interaction then ceased as each pair resumed foraging in their respective territories. These observations suggest that Rufous Horneros can use EPC to obtain immediate benefits (food access in a neighbor’s territory). Moreover, WPC may be detected by neighbors and physical mate guarding and/or frequent WPC may be necessary to prevent EPC in the Rufous Hornero.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Diego Solano-Brenes ◽  
Luiz Ernesto Costa-Schmidt ◽  
Maria Jose Albo ◽  
Glauco Machado

Abstract Background When males are selective, they can either reject low-quality females or adjust their reproductive investment in response to traits that indicate female quality (e.g., body size or condition). According to the differential allocation hypothesis, males increase their reproductive investment when paired with high-quality females (positive differential allocation) or increase their reproductive investment when paired with low-quality females (negative differential allocation). This hypothesis has been proposed for monogamous species with biparental care, and most empirical studies focus on birds. Here we used the polygamous spider Paratrechalea ornata, in which males offer prey wrapped in silk as nuptial gifts, to test whether males adjust their reproductive investment in gift size, pre-copulatory and copulatory courtship, and sperm transfer in response to female body condition. Results Males exposed to females in good body condition added more flies to the gift, stimulated these females longer with abdominal touches during pre-copulatory courtship, and had longer pedipalp insertions than males exposed to females in poor body condition. Female condition affected neither silk investment in nuptial gift wrapping nor the quantity of sperm transferred by males. Finally, females in good body condition oviposited faster after copulation and laid more eggs than females in poor body condition. Conclusions We provide experimental evidence that males of a gift-giving spider exhibit positive differential allocation in three key aspects of their reproductive investment: the size of the nutritious gift, duration of pre-copulatory courtship, and duration of pedipalp insertions, which is regarded as a form of copulatory courtship in spiders. This positive differential allocation is likely associated with the benefits of copulating with females in good body condition. These females are more fecund and oviposit faster after copulation than females in poor body condition, which under natural field conditions probably reduces the risk of multiple matings and thus the level of sperm competition faced by the males. As a final remark, our findings indicate that the hypothesis of differential allocation also applies to species with a scramble competition mating system, in which males heavily invest in nuptial gift construction, but not in parental care.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1491
Author(s):  
Gerhard van der Horst

(1) Background: in order to propagate wildlife species (covering the whole spectrum from species suitable for aquaculture to endangered species), it is important to have a good understanding of the quality of their sperm, oocytes and embryos. While sperm quality analyses have mainly used manual assessment in the past, such manual estimations are subjective and largely unreliable. Accordingly, quantitative and cutting-edge approaches are required to assess the various aspects of sperm quality. The purpose of this investigation was to illustrate the latest technology used in quantitative evaluation of sperm quality and the required cut-off points to distinguish the differential grades of fertility potential in a wide range of vertebrate species. (2) Methods: computer-aided sperm analysis (CASA) with an emphasis on sperm motility, 3D tracking and flagellar and sperm tracking analysis (FAST), as well as quantitative assessment of sperm morphology, vitality, acrosome status, fragmentation and many other complimentary technologies. (3) Results: Assessing sperm quality revealed a great deal of species specificity. For example, in freshwater fish like trout, sperm swam in a typical tight helical pattern, but in seawater species sperm motility was more progressive. In amphibian species, sperm velocity was slow, in contrast with some bird species (e.g., ostrich). Meanwhile, in African elephant and some antelope species, fast progressive sperm was evident. In most species, there was a high percentage of morphologically normal sperm, but generally, low percentages were observed for motility, vitality and normal morphology evident in monogamous species. (4) Conclusions: Sperm quality assessment using quantitative methodologies such as CASA motility, FAST analysis, morphology and vitality, as well as more progressive methodologies, assisted in better defining sperm quality—specifically, sperm functionality of high-quality sperm. This approach will assist in the propagation of wildlife species.


2021 ◽  
Vol 288 (1950) ◽  
Author(s):  
Tyler N. Wittman ◽  
Robert M. Cox

The extent to which parasites reduce host survival should depend upon how hosts balance trade-offs between reproduction and survival. For example, parasites are predicted to impose greater survival costs under polygynous or promiscuous mating systems in which competition for mates favours increased reproductive investment, particularly in males. We provide, to our knowledge, the first comparative test of the hypothesis that the mating system of the host is an important determinant of (i) the extent to which parasites reduce survival, and (ii) the extent to which males and females differ in the survival cost of parasitism. Using meta-analysis of 85 published estimates of the survival cost of parasitism from 72 studies of 64 species representing diverse animal lineages, we show that parasites impose a mean 3.5-fold increase in the odds of mortality on their hosts. Although this survival cost does not differ significantly across monogamous, polygynous and promiscuous mating systems, females incur a greater survival cost than males in monogamous species, whereas males incur a greater survival cost than females in polygynous and promiscuous species. Our results support the idea that mating systems shape the relative extent to which males and females invest in reproduction at the expense of defence against parasites.


Author(s):  
JEAN MARC PAILLISSON ◽  
Rémi Chambon

Nest building can represent an energetically-costly activity for a variety of animal taxa. Besides, the determinants of within-species variation in the design of nests, notably with respect to natural and sexual selection, are still poorly known although the situation has been partly remedied recently. Based on an observational study, we examined the influence of nesting conditions (nesting-substrate quality, colony, laying date, and year) on the volume of male-built nests and its potential role as a post-mating sexually-selected display in the whiskered tern Chlidonias hybrida, a monogamous species with obligate bi-parental care breeding on unstable aquatic vegetation beds. No relationship was found between the nest volume and the nesting-substrate quality (i.e. nest stability) indicating that the density of white waterlily leaves was large enough when whiskered terns breed. In contrast, building a large nest likely constitutes a selective advantage since nests were larger in less densely populated colonies and for early breeders whatever the year. Since being influenced by nesting conditions, the volume of male-built nests was unlikely to be a sexually selected trait in whiskered terns. The reproductive effort by females (the probability of laying one, two or three eggs, and variation in mean egg volume per clutch) was indeed not correlated with the volume of male-built nests. The fitness consequences of building a large nest are yet to be studied and additional investigations are recommended to better depict the participation of males early during breeding (including notably courtship feeding) and later to chick provisioning.


2021 ◽  
Author(s):  
Landen Gozashti ◽  
Russell Corbett-Detig ◽  
Scott W Roy

Reproductive proteins, including those expressed in the testes, are among the fastest evolving proteins across the tree of life. Sexual selection on traits involved in sperm competition is thought to be a primary driver of testes gene evolution and is expected to differ between promiscuous and monogamous species due to intense competition between males to fertilize females in promiscuous lineages and lack thereof in monogamous ones. Here, we employ the rodent genus Peromyscus as a model to explore differences in evolutionary rates between testis-expressed genes of monogamous and promiscuous species. We find candidate genes that may be associated with increased sperm production in promiscuous species and gene ontology categories that show patterns of molecular convergence associated with phenotypic convergence in independently evolved monogamous species. Overall, our results highlight possible molecular correlates of differences in mating system, which can be contextualized in light of expected selective pressures.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 555
Author(s):  
Barbara Rani ◽  
Bruna Silva-Marques ◽  
Rob Leurs ◽  
Maria Beatrice Passani ◽  
Patrizio Blandina ◽  
...  

The ability of recognizing familiar conspecifics is essential for many forms of social interaction including reproduction, establishment of dominance hierarchies, and pair bond formation in monogamous species. Many hormones and neurotransmitters have been suggested to play key roles in social discrimination. Here we demonstrate that disruption or potentiation of histaminergic neurotransmission differentially affects short (STM) and long-term (LTM) social recognition memory. Impairments of LTM, but not STM, were observed in histamine-deprived animals, either chronically (Hdc−/− mice lacking the histamine-synthesizing enzyme histidine decarboxylase) or acutely (mice treated with the HDC irreversible inhibitor α-fluoromethylhistidine). On the contrary, restriction of histamine release induced by stimulation of the H3R agonist (VUF16839) impaired both STM and LTM. H3R agonism-induced amnesic effect was prevented by pre-treatment with donepezil, an acetylcholinesterase inhibitor. The blockade of the H3R with ciproxifan, which in turn augmented histamine release, resulted in a procognitive effect. In keeping with this hypothesis, the procognitive effect of ciproxifan was absent in both Hdc−/− and αFMH-treated mice. Our results suggest that brain histamine is essential for the consolidation of LTM but not STM in the social recognition test. STM impairments observed after H3R stimulation are probably related to their function as heteroreceptors on cholinergic neurons.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 620
Author(s):  
Emily Rebecca Alison Cramer

When females copulate with multiple males, pre- and post-copulatory sexual selection may interact synergistically or in opposition. Studying this interaction in wild populations is complex and potentially biased, because copulation and fertilization success are often inferred from offspring parentage rather than being directly measured. Here, I simulated 15 species of socially monogamous birds with varying levels of extra-pair paternity, where I could independently cause a male secondary sexual trait to improve copulation success, and a sperm trait to improve fertilization success. By varying the degree of correlation between the male and sperm traits, I show that several common statistical approaches, including univariate selection gradients and paired t-tests comparing extra-pair males to the within-pair males they cuckolded, can give highly biased results for sperm traits. These tests should therefore be avoided for sperm traits in socially monogamous species with extra-pair paternity, unless the sperm trait is known to be uncorrelated with male trait(s) impacting copulation success. In contrast, multivariate selection analysis and a regression of the proportion of extra-pair brood(s) sired on the sperm trait of the extra-pair male (including only broods where the male sired ≥1 extra-pair offspring) were unbiased, and appear likely to be unbiased under a broad range of conditions for this mating system. In addition, I investigated whether the occurrence of pre-copulatory selection impacted the strength of post-copulatory selection, and vice versa. I found no evidence of an interaction under the conditions simulated, where the male trait impacted only copulation success and the sperm trait impacted only fertilization success. Instead, direct selection on each trait was independent of whether the other trait was under selection. Although pre- and post-copulatory selection strength was independent, selection on the two traits was positively correlated across species because selection on both traits increased with the frequency of extra-pair copulations in these socially monogamous species.


Sign in / Sign up

Export Citation Format

Share Document