A Glimpse of Secure Multiparty Computation for Privacy Preserving Data Mining

2019 ◽  
Vol 11 (1) ◽  
pp. 163-166
Author(s):  
Mamta Sakpal
Cyber Crime ◽  
2013 ◽  
pp. 395-415 ◽  
Author(s):  
Can Brochmann Yildizli ◽  
Thomas Pedersen ◽  
Yucel Saygin ◽  
Erkay Savas ◽  
Albert Levi

Recent concerns about privacy issues have motivated data mining researchers to develop methods for performing data mining while preserving the privacy of individuals. One approach to develop privacy preserving data mining algorithms is secure multiparty computation, which allows for privacy preserving data mining algorithms that do not trade accuracy for privacy. However, earlier methods suffer from very high communication and computational costs, making them infeasible to use in any real world scenario. Moreover, these algorithms have strict assumptions on the involved parties, assuming involved parties will not collude with each other. In this paper, the authors propose a new secure multiparty computation based k-means clustering algorithm that is both secure and efficient enough to be used in a real world scenario. Experiments based on realistic scenarios reveal that this protocol has lower communication costs and significantly lower computational costs.


Author(s):  
Can Brochmann Yildizli ◽  
Thomas Pedersen ◽  
Yucel Saygin ◽  
Erkay Savas ◽  
Albert Levi

Recent concerns about privacy issues have motivated data mining researchers to develop methods for performing data mining while preserving the privacy of individuals. One approach to develop privacy preserving data mining algorithms is secure multiparty computation, which allows for privacy preserving data mining algorithms that do not trade accuracy for privacy. However, earlier methods suffer from very high communication and computational costs, making them infeasible to use in any real world scenario. Moreover, these algorithms have strict assumptions on the involved parties, assuming involved parties will not collude with each other. In this paper, the authors propose a new secure multiparty computation based k-means clustering algorithm that is both secure and efficient enough to be used in a real world scenario. Experiments based on realistic scenarios reveal that this protocol has lower communication costs and significantly lower computational costs.


2011 ◽  
Vol 7 (1) ◽  
pp. 46-66 ◽  
Author(s):  
Can Brochmann Yildizli ◽  
Thomas Pedersen ◽  
Yucel Saygin ◽  
Erkay Savas ◽  
Albert Levi

Recent concerns about privacy issues have motivated data mining researchers to develop methods for performing data mining while preserving the privacy of individuals. One approach to develop privacy preserving data mining algorithms is secure multiparty computation, which allows for privacy preserving data mining algorithms that do not trade accuracy for privacy. However, earlier methods suffer from very high communication and computational costs, making them infeasible to use in any real world scenario. Moreover, these algorithms have strict assumptions on the involved parties, assuming involved parties will not collude with each other. In this paper, the authors propose a new secure multiparty computation based k-means clustering algorithm that is both secure and efficient enough to be used in a real world scenario. Experiments based on realistic scenarios reveal that this protocol has lower communication costs and significantly lower computational costs.


2013 ◽  
Vol 756-759 ◽  
pp. 1661-1664 ◽  
Author(s):  
Xiao Ming Zhu

Privacy preserving in data mining is a significant direction. There has been growing interests in private concerns for future data mining research. Privacy preserving data mining concentrates on developing accurate models without sharing precise individual data records. A privacy preserving association rule mining algorithm was introduced. This algorithm preserved privacy of individual values by computing scalar product. Then, the data mining and secure multiparty computation are briefly introduced. And proposes an implementation for privacy preserving mining protocol based secure multiparty computation protocol.


Author(s):  
Yehuda Lindell ◽  
Benny Pinkas

In this paper, we survey the basic paradigms and notions of secure multiparty computation and discuss their relevance to the field of privacy-preserving data mining. In addition to reviewing definitions and constructions for secure multiparty computation, we discuss the issue of efficiency and demonstrate the difficulties involved in constructing highly efficient protocols. We also present common errors that are prevalent in the literature when secure multiparty computation techniques are applied to privacy-preserving data mining. Finally, we discuss the relationship between secure multiparty computation and privacy-preserving data mining, and show which problems it solves and which problems it does not.


Sign in / Sign up

Export Citation Format

Share Document