Single Electron Quantum-Dot Cellular Automata, A Novel Device for Nano Scale Computations

2016 ◽  
Vol 13 (7) ◽  
pp. 4771-4777
Author(s):  
Nasim Kazemi Fard ◽  
Keivan Navi
2019 ◽  
Vol 8 (4) ◽  
pp. 10408-10420

Image Steganography isa method of concealment secret information, by embedding it into a video, image. It is one in every of the methods employed to protect secret or sensitive information from malicious attacks. Here we are consider secure image data transmission through secure nano-scale communication circuit, Quantum-dot cellular automata (QCA), could be a new paradigm that replaces CMOS circuits by victimization the charge configuration. QCA is used to design the modern digital circuits at the Nanoscale. Thus, using QCA to implement the proposed design reduces 28.33% of area compared with CMOS implementation. When we consider the features of QCA nanotechnology, it performs well low power dissipation and nano scale size at high frequency is exploring as a emerging technology to replace CMOS based systems. The technology behind the QCA Feynman, Toffoli, and Fredkin universal reversible logic gates circuits in the base are implemented and analyzed. In order to optimize the design QCA technology extend up to 5-input majority gates and use a F-Gate. We are proposed reversible XOR gate like Feynman gate as an Encoder/Decoder circuit. Further consider the benifits of QCA the proposed circuit is encoder circuit is also used for reverse computing to encode the data and to use the LSB technique in the image pixels for secure nano communication circuit. We estimated the area and latency of the QCA circuit


Technological advancements have witnessed rapid regression of Moore’s Law within the past few years. With rising demand for higher clocking speeds, CMOS has already started exhibiting threshold limitations. Reversible Logic has emerged as a suitable alternative with near zero heat dissipation attribute. Quantum Dot Cellular Automata (QCA) has adopted the concept of reversibility and emerged as a primitive tool for quantum architecture deigns with clocking near Terra-Hertz range. A plethora of quantum architectures based on QCA cells have been proposed till date. With rise of research on digital designs based on QCA, multiple literary proposals exist which realize digital designs incorporating QCA cells. This communication proposes a Hamming Code Generator-Checker architecture design using 4-dot-2-electron QCA cells. We employ an existing QCA based XOR gate literary proposal for designing the proposed architecture. Peer comparison with literary counterparts has proven our design to fare better with a gain of 60.6% in area.


Sign in / Sign up

Export Citation Format

Share Document