Boundary Layer Flow and Heat Transfer Characteristics Over a Moving Plate in a Stable Stratified Nanofluid

2016 ◽  
Vol 5 (6) ◽  
pp. 935-940
Author(s):  
Noor Syamimi Omar ◽  
Norfifah Bachok ◽  
NorihanMd. Arifin
Author(s):  
Mohammad M. Rahman ◽  
Mohammed M. Al-Hatmi

In this paper we investigate numerically the hydromagnetic boundary layer flow and heat transfer characteristics of a nanofluid using three types of nanoparticles (copper, aluminium oxide and titanium dioxide) having various shapes (spherical, cylindrical, arbitrary, etc) by considering three kinds of base fluids (water, ethylene glycol and engine oil) over a nonlinear inclined stretching surface, taking into account the effect of convective surface condition. Using similarity transformations, the governing nonlinear partial differential equations of the physical model are transformed into non-dimensional ordinary differential equations which are solved for local similar solutions using the very robust computer algebra software, Maple 13. The numerical simulation is carried out to investigate the role of the pertinent parameters on the flow and temperature fields as well as on the rate of heat transfer and on the rate of shear stress. The results show that the addition of nanoparticles to the base fluid may not always increase the rate of heat transfer. It depends significantly on the surface convection, type of base fluid and nanoparticles.  The finding of this study will open a gate for better understanding of nanofluid characteristics.  


Author(s):  
Mohammad M. Rahman ◽  
Ioan Pop

The aim of the present study is to analyze numerically the steady boundary layer flow and heat transfer characteristics of Casson fluid with variable temperature and viscous dissipation past a permeable shrinking sheet with second order slip velocity. Using appropriate similarity transformations, the basic nonlinear partial differential equations have been transformed into ordinary differential equations. These equations have been solved numerically for different values of the governing parameters namely: shrinking parametersuction parameterCasson parameterfirst order slip parametersecond order slip parameter  Prandtl number  and the Eckert number  using the bvp4c function from MATLAB. A stability analysis has also been performed. Numerical results have been obtained for the reduced skin-friction, heat transfer and the velocity and temperature profiles. The results indicate that dual solutions exist for the shrinking surface for certain values of the parameter space. The stability analysis indicates that the lower solution branch is unstable, while the upper solution branch is stable and physically realizable. In addition, it is shown that for a viscous fluida very good agreement exists between the present numerical results and those reported in the open literature. The present results are original and new for the boundary-layer flow and heat transfer past a shrinking sheet in a Casson fluid. Therefore, this study has importance for researchers working in the area of non-Newtonian fluids, in order for them to become familiar with the flow behavior and properties of such fluids.  


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
T. Grosan ◽  
I. Pop

The classical problem of forced convection boundary layer flow and heat transfer past a needle with variable wall temperature using nanofluids is theoretically studied. The similarity equations are solved numerically for two types of metallic or nonmetallic, such as copper (Cu) and alumina (Al2O3) nanoparticles in the based fluid of water with the Prandtl number Pr=7 to investigate the effect of the solid volume fraction parameter ϕ of the fluid and heat transfer characteristics. The skin friction coefficient, Nusselt number, and the velocity and temperature profiles are presented and discussed. It is found that the solid volume fraction affects the fluid flow and heat transfer characteristics.


Sign in / Sign up

Export Citation Format

Share Document