base fluid
Recently Published Documents


TOTAL DOCUMENTS

480
(FIVE YEARS 216)

H-INDEX

28
(FIVE YEARS 11)

2022 ◽  
Vol 3 ◽  
Author(s):  
Jie Zong ◽  
Jun Yue

Colloidal suspensions of nanoparticles (e.g., metals and oxides) have been considered as a promising working fluid in microreactors for achieving significant process intensification. Existing examples include their uses in microflow as catalysts for enhancing the reaction efficiency, or as additives to mix with the base fluid (i.e., to form the so-called nanofluids) for heat/mass transfer intensification. Thus, hydrodynamic characterization of such suspension flow in microreactors is of high importance for a rational design and operation of the system. In this work, experiments have been conducted to investigate the flow pattern and pressure drop characteristics under slug flow between N2 gas and colloidal suspensions in the presence of TiO2 or Al2O3 nanoparticles through polytetrafluoroethylene (PTFE) capillary microreactors. The base fluid consisted of water or its mixture with ethylene glycol. The slug flow pattern with nanoparticle addition was characterized by the presence of a lubricating liquid film around N2 bubbles, in contrast to the absence of liquid film in the case of N2-water slug flow. This shows that the addition of nanoparticles has changed the wall wetting property to be more hydrophilic. Furthermore, the measured pressure drop under N2-nanoparticle suspension slug flow is well described by the model of Kreutzer et al. (AIChE J 51(9):2428–2440, 2005) at the mixture Reynolds numbers ca. above 100 and is better predicted by the model of Warnier et al. (Microfluidics and Nanofluidics 8(1):33–45, 2010) at lower Reynolds numbers given a better consideration of the effect of film thickness and bubble velocity under such conditions in the latter model. Therefore, the employed nanoparticle suspension can be considered as a stable and pseudo single phase with proper fluid properties (e.g., viscosity and density) when it comes to the pressure drop estimation.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Nazia Shahmir ◽  
Hassan Ali S. Ghazwani ◽  
Kottakkaran Sooppy Nisar ◽  
Faizah M. Alharbi ◽  
...  

AbstractSolar thermal systems have low efficiency due to the working fluid's weak thermophysical characteristics. Thermo-physical characteristics of base fluid depend on particle concentration, diameter, and shapes. To assess a nanofluid's thermal performance in a solar collector, it is important to first understand the thermophysical changes that occur when nanoparticles are introduced to the base fluid. The aim of this study is, therefore, to analyze the hydrodynamic and heat characteristics of two different water-based hybrid nanofluids (used as a solar energy absorber) with varied particle shapes in a porous medium. As the heat transfer surface is exposed to the surrounding environment, the convective boundary condition is employed. Additionally, the flow of nanoliquid between two plates (in parallel) is observed influenced by velocity slip, non-uniform heat source-sink, linear thermal radiation. To make two targeted hybrid nanofluids, graphene is added as a cylindrical particle to water to make a nanofluid, and then silver is added as a platelet particle to the graphene/water nanofluid. For the second hybrid nanofluid, CuO spherical shape particles are introduced to the graphene/water nanofluid. The entropy of the system is also assessed. The Tiwari-Das nanofluid model is used. The translated mathematical formulations are then solved numerically. The physical and graphical behavior of significant parameters is studied.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 103
Author(s):  
Fatemeh Razavirad ◽  
Abbas Shahrabadi ◽  
Parham Babakhani Dehkordi ◽  
Alimorad Rashidi

Nanofluid flooding, as a new technique to enhance oil recovery, has recently aroused much attention. The current study considers the performance of a novel iron-carbon nanohybrid to EOR. Carbon nanoparticles was synthesized via the hydrothermal method with citric acid and hybridize with iron (Fe3O4). The investigated nanohybrid is characterized by its rheological properties (viscosity), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analysis. The efficiency of the synthetized nanoparticle in displacing heavy oil is initially assessed using an oil–wet glass micromodel at ambient conditions. Nanofluid samples with various concentrations (0.05 wt % and 0.5 wt %) dispersed in a water base fluid with varied salinities were first prepared. The prepared nanofluids provide high stability with no additive such as polymer or surfactant. Before displacement experiments were run, to achieve a better understanding of fluid–fluid and grain–fluid interactions in porous media, a series of sub-pore scale tests—including interfacial tension (IFT), contact angle, and zeta potential—were conducted. Nanofluid flooding results show that the nanofluid with the medium base fluid salinity and highest nanoparticle concertation provides the highest oil recovery. However, it is observed that increasing the nanofluid concentration from 0.05% to 0.5% provided only three percent more oil. In contrast, the lowest oil recovery resulted from low salinity water flooding. It was also observed that the measured IFT value between nanofluids and crude oil is a function of nanofluid concentration and base fluid salinities, i.e., the IFT values decrease with the increase of nanofluid concentration and base fluid salinity reduction. However, the base fluid salinity enhancement leads to wettability alteration towards more water-wetness. The main mechanisms responsible for oil recovery enhancement during nanofluid flooding is mainly attributed to wettability alteration toward water-wetness and micro-dispersion formation. However, the interfacial tension (IFT) reduction using the iron-carbon nanohybrid is also observed but the reduction is not significant.


Author(s):  
Md Insiat Islam Rabby ◽  
◽  
Farzad Hossain ◽  
Raihan M M ◽  
Afrina Khan Piya ◽  
...  

Enhancing the heat transfer rate is highly required to remove excessive heat load from the heat transfer apparatus, which may cause massive damage to the equipment. Thus, increment of heat transfer area is one of the prime solutions for this issue. The increment of heat transfer area can be done by enhancing the pipe wall and incorporating nanoparticles with working fluids because nanoparticles showed much faster heat dispersion due to a vast surface area for heat transfer and increased thermal conductivity. Also, small molecules of nanoparticles are allowed for free movement and thus micro-convection, promoting high thermal conductivity. Higher thermal conductivity is mainly the result of a higher heat transfer rate. Therefore, in this study, a saw-type corrugated tube was considered along with the SiC-water nanofluid as the working fluid to determine the improvement of laminar convective heat transfer in terms of the Nusselt number, heat transfer coefficient, and pressure loss. The result demonstrated that by increasing the Reynolds number, the Nusselt number, heat transfer coefficient, and pressure loss were increased significantly with the enhancement of SiC-water concentration. At a Reynolds number of 1200, the maximum increment of Nusselt number in comparison to the base fluid was 9.15% when the corrugated pipe was considered. Meanwhile, the maximum improvement of heat transfer coefficient for SiC-water nanofluid in comparison to the base fluid was 37.66%.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 59
Author(s):  
Alexander Balitskii ◽  
Myroslav Kindrachuk ◽  
Dmytro Volchenko ◽  
Karol F. Abramek ◽  
Olexiy Balitskii ◽  
...  

The article is devoted to the following issues: boiling of fluid in the cooling jacket of the engine cylinder head; agents that influenced the thermal conductivity coefficient of nanofluids; behavior of nanoparticles and devices with nanoparticles in the engine’s cylinder head cooling system. The permissible temperature level of internal combustion engines is ensured by intensification of heat transfer in cooling systems due to the change of coolants with “light” and “heavy” nanoparticles. It was established that the introduction of “light” nanoparticles of aluminum oxide into the water in a mass concentration of 0.75% led to an increase in its thermal conductivity coefficient by 60% compared to the base fluid at a coolant temperature of 90 °C, which corresponds to the operating temperature of the engine cooling systems. At the indicated temperature, the base fluid has a thermal conductivity coefficient of 0.545 W/(m °С), for nanofluid with particles its value was 0.872 . At the same time, a positive change in the parameters of the nanofluid in the engine cooling system was noted: the average movement speed increased from 0.2 to 2.0 m/s; the average temperature is in the range of 60–90 °C; heat flux density 2 × 102–2 × 106 ; heat transfer coefficient 150–1000 . Growth of the thermal conductivity coefficient of the cooling nanofluid was achieved. This increase is determined by the change in the mass concentration of aluminum oxide nanoparticles in the base fluid. This will make it possible to create coolants with such thermophysical characteristics that are required to ensure intensive heat transfer in cooling systems of engines with various capacities.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Saif Ali Kadhim ◽  
Osama Abd AL-Munaf Ibrahim

Solar energy is one of the most important types of renewable energy and is characterized by its availability, especially in Iraq. It can be used in many applications, including supply thermal energy by solar collectors. Improving the thermal efficiency of solar collector leads to an increase in the thermal energy supplied. Using a nano-fluid instead of base fluid (water is often used) as a working fluid is a method many used to increase the thermal efficiency of solar collectors. In this article, the latest research that used nano-fluid as a working fluid in evaluating the thermal efficiency of solar collector, type flat plate was reviewed. The thermal efficiency improvement of flat plate solar collector was reviewed based on the type of nanoparticles (metal oxides, semiconductors oxides, carbon compounds) used in the base fluid and comparison was made between these nanoparticles under the same conditions. Moreover, the effect of varying the concentration of nanoparticles in the base fluid and changing the working fluid flow rate on the thermal efficiency of flat plate solar collector was also reviewed. The results of the review showed that nano-fluids containing carbon compounds are better than other nano-fluids and that copper oxide is better than the rest of the metal oxides used in improving the thermal efficiency of flat plate solar collectors.


Author(s):  
M. Riaz Khan ◽  
Awatef Abidi ◽  
Jamel Madiouli ◽  
Kamel Guedri ◽  
A.M. Al-Bugami ◽  
...  

The two-dimensional magnetohydrodynamics incompressible flow of nanofluid about a stretching surface is investigated with the existence of viscous dissipation and Joule heating. Moreover, the impact of the convective condition and mass suction is applied with the viscous nanofluid containing copper nanoparticles and the base fluid water. The similarity variables have been employed to transform the coupled nonlinear partial differential equations into the ordinary differential equations and the numerical scheme bp4c is implemented for the further analysis of the solution. The diverse results of temperature, skin friction coefficient, velocity, and the Nusselt number according to numerous parameters have been shown graphically. It appears that the Nusselt number and the skin friction reduces, which is caused by the enhancement of both Hartman number and nanoparticles concentration. Moreover, the fluid temperature surges with the growth of Biot number, and Eckert number whereas the growth of nanoparticles concentration and suction parameter diminishes the velocity and temperature profile. The inclusion of a significant quantity of nanoparticles in the base fluid increases the density of the corresponding nanofluids and accordingly the temperature of the coupled nanoparticles in the base fluids can be modified. Hence, nanofluids build an outstanding performance in electronic components appliances and other electrical devices. The existing research is further effective in refrigerators for stabilizing their rate of cooling.


2021 ◽  
Author(s):  
Mustafa Ahmed Alkhowaildi ◽  
Mohamed Mahmoud ◽  
Mohammed Abdullah Bataweel ◽  
Bassam Tawabini

Abstract Amid the rise in energy demand over recent years, natural gas from tight reservoirs has been targeted abundantly around the globe by different oil operators. Hydraulic fracturing technology has been instrumental in the successful exploitation of energy from tight formations. The process is associated with enormous usage of water. Hydraulic fracturing requires as little as 500,000 gallons of freshwater, and up to 6 million gallons per well depending on the type of well and the number of stages treated. Now operators, as well as service companies worldwide, have shown a desire to use produced water in field operations to enhance economics and reduce their environmental footprint. Reusing produced water in field operations appears to be a win-win proposition by transforming the industry's biggest waste product into a resource. This paper highlights the recent findings in published articles about formulating a fracturing fluid from produced water as a base fluid. The rheological properties and fluid performance requirements, such as proppant carrying capacity, mixing, fluid efficiency, ability to crosslink and break, and cleanup after treatment, will be evaluated in detail. This paper identified the critical parameters associated with high TDS fluids (produced water) such as pH, hydration time, ionic strength, and suspended solids, collected the corresponding optimal ranges for these parameters in laboratory tests, and reported some of the validity of the findings under actual conditions in field trials around the world. Most studies demonstrated the feasibility of using untreated produced water as a base fluid for crosslinked gel-based hydraulic fracturing. Through adjusting the hydration time, the gel loading, and the amount of breakers applied, it is conceivable that crosslinked gels with optimal rheological characteristics can be formulated with untreated produced water. Multiple generations of guar- and CMHPG-based crosslinked fracturing fluids, developed with 100% untreated produced water, exhibited optimal viscosities exceeding 200 cp at 40 s−1 for at least 60 minutes. The ability to provide fracturing fluids with high-salinity produced water can be a successful water conservation approach and an attractive solution for enhancing operation economics. Some studies indicated that using produced water can be better than freshwater because the produced water is more compatible with the reservoir and may be less likely to cause conditions such as salinity shock, which can damage the formation. More studies are needed to understand the associated technical challenges further.


Lubricants ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 119
Author(s):  
Heinrich R. Braun ◽  
Spyridon Korres ◽  
Peter Laurs ◽  
Joerg W. H. Franke

Increasing automotive powertrain electrification is impacting drivetrain complexity and the profiles of the fluids needed. Since the millennium, drivetrain fluid viscosities have been reduced for better efficiency, but this new challenge is driving them to unprecedented low levels. This paper assesses some of the potential implications of ultra-low viscosity fluids on drivetrain functionality and durability. Model formulations have been prepared from a variety of base fluids combined with additive packages. These have been evaluated in typical automotive drivetrain rig tests, as well as with some selected functional tests. In addition, the thermo-oxidative stability and electrical and thermal properties of the fluids were compared. Based on the results, the impact of low viscosity fluids on drivetrain functionality and durability varies depending on the performance parameter evaluated. For example, gear scuffing and bearing wear is highly dependent on additives, whilst gear and bearing fatigue is mainly affected by fluid viscosity. However, by carefully balancing base fluids and additives, acceptable component and fluid durability can be achieved. With respect to new electric drivetrain performance needs, the thermal properties of the finished fluid are essentially dependent on the base fluid composition, whilst its electrical properties are more influenced by additive chemistry, with some secondary impact from base fluid composition.


Sign in / Sign up

Export Citation Format

Share Document