scholarly journals Oceanographic variability on the West Antarctic Peninsula during the Holocene and the influence of upper circumpolar deep water

2015 ◽  
Vol 119 ◽  
pp. 54-65 ◽  
Author(s):  
Victoria L. Peck ◽  
Claire S. Allen ◽  
Sev Kender ◽  
Erin L. McClymont ◽  
Dominic A. Hodgson
2012 ◽  
Vol 25 (14) ◽  
pp. 4799-4816 ◽  
Author(s):  
Michael S. Dinniman ◽  
John M. Klinck ◽  
Eileen E. Hofmann

Abstract Circumpolar Deep Water (CDW) can be found near the continental shelf break around most of Antarctica. Advection of this relatively warm water (up to 2°C) across the continental shelf to the base of floating ice shelves is thought to be a critical source of heat for basal melting in some locations. A high-resolution (4 km) regional ocean–sea ice–ice shelf model of the west Antarctic Peninsula (WAP) coastal ocean was used to examine the effects of changes in the winds on across-shelf CDW transport and ice shelf basal melt. Increases and decreases in the strength of the wind fields were simulated by scaling the present-day winds by a constant factor. Additional simulations considered effects of increased Antarctic Circumpolar Current (ACC) transport. Increased wind strength and ACC transport increased the amount of CDW transported onto the WAP continental shelf but did not necessarily increase CDW flux underneath the nearby ice shelves. The basal melt underneath some of the deeper ice shelves actually decreased with increased wind strength. Increased mixing over the WAP shelf due to stronger winds removed more heat from the deeper shelf waters than the additional heat gained from increased CDW volume transport. The simulation results suggest that the effect on the WAP ice shelves of the projected strengthening of the polar westerlies is not a simple matter of increased winds causing increased (or decreased) basal melt. A simple budget calculation indicated that iron associated with increased vertical mixing of CDW could significantly affect biological productivity of this region.


2013 ◽  
Vol 6 (3) ◽  
pp. 199-202 ◽  
Author(s):  
Jennifer Pike ◽  
George E. A. Swann ◽  
Melanie J. Leng ◽  
Andrea M. Snelling

Author(s):  
Robert M. Sherrell ◽  
Amber L. Annett ◽  
Jessica N. Fitzsimmons ◽  
Vincent J. Roccanova ◽  
Michael P. Meredith

Palmer Deep (PD) is one of several regional hotspots of biological productivity along the inner shelf of the West Antarctic Peninsula. The proximity of hotspots to shelf-crossing deep troughs has led to the ‘canyon hypothesis’, which proposes that circumpolar deep water flowing shoreward along the canyons is upwelled on the inner shelf, carrying nutrients including iron (Fe) to surface waters, maintaining phytoplankton blooms. We present here full-depth profiles of dissolved and particulate Fe and manganese (Mn) from eight stations around PD, sampled in January and early February of 2015 and 2016, allowing the first detailed evaluation of Fe sources to the area's euphotic zone. We show that upwelling of deep water does not control Fe flux to the surface; instead, shallow sediment-sourced Fe inputs are transported horizontally from surrounding coastlines, creating strong vertical gradients of dissolved Fe within the upper 100 m that supply this limiting nutrient to the local ecosystem. The supply of bioavailable Fe is, therefore, not significantly related to the canyon transport of deep water. Near shore time-series samples reveal that local glacial meltwater appears to be an important Mn source but, surprisingly, is not a large direct Fe input to this biological hotspot. This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change’.


2021 ◽  
Author(s):  
Ria Oelerich ◽  
Karen J. Heywood ◽  
Gillian M. Damerell ◽  
Andrew F. Thompson

<p>The continental shelf of the Bellingshausen Sea, located between the West Antarctic Peninsula and the Amundsen Sea, Antarctica, is poorly investigated, compared with its neighbours. Here, the southernmost frontal jet of the Antarctic Circumpolar Current is adjacent to the continental slope which impacts the transport of warm Circumpolar Deep Water onto the shelf. This in turn can influence the transport of heat southward across the shelf and therefore the melting of vulnerable ice shelves.</p><p>We present model-based investigations using the GLORYS12V1 1/12° reanalysis monthly output (GLOBAL_REANALYSIS_PHY_001_030) over 19 years from 2000 to 2018. By connecting the location of the frontal jet to SSH contours we identify seasonal and interannual variability in this current system and demonstrate that the closer the frontal jet is to the continental slope, the greater the flow of warm deep water onto the shelf. This onshore flow is limited to specific areas closest to the frontal jet, predominantly in the eastern Bellingshausen Sea. In contrast, other areas, specifically those troughs where water flows towards the West Antarctic Peninsula and close to the coastline of Antarctica show opposite behaviour with respect to onshelf heat content. Further analyses of flow patterns also indicate the involvement of a coastal jet close to the shore that is weaker when more warm water is on the shelf. Understanding the variability in the current structures throughout the continental shelf of the Bellingshausen Sea in response to a changing frontal jet is essential to gain knowledge about the distribution of heat and therefore the melting of ice shelves.</p>


Author(s):  
Oscar Schofield ◽  
Michael Brown ◽  
Josh Kohut ◽  
Schuyler Nardelli ◽  
Grace Saba ◽  
...  

The West Antarctic Peninsula (WAP) has experienced significant change over the last 50 years. Using a 24 year spatial time series collected by the Palmer Long Term Ecological Research programme, we assessed long-term patterns in the sea ice, upper mixed layer depth (MLD) and phytoplankton productivity. The number of sea ice days steadily declined from the 1980s until a recent reversal that began in 2008. Results show regional differences between the northern and southern regions sampled during regional ship surveys conducted each austral summer. In the southern WAP, upper ocean MLD has shallowed by a factor of 2. Associated with the shallower mixed layer is enhanced phytoplankton carbon fixation. In the north, significant interannual variability resulted in the mixed layer showing no trended change over time and there was no significant increase in the phytoplankton productivity. Associated with the recent increases in sea ice there has been an increase in the photosynthetic efficiency (chlorophyll a -normalized carbon fixation) in the northern and southern regions of the WAP. We hypothesize the increase in sea ice results in increased micronutrient delivery to the continental shelf which in turn leads to enhanced photosynthetic performance. This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change’.


Sign in / Sign up

Export Citation Format

Share Document