ross sea
Recently Published Documents


TOTAL DOCUMENTS

1820
(FIVE YEARS 343)

H-INDEX

80
(FIVE YEARS 7)

Marine Policy ◽  
2022 ◽  
Vol 136 ◽  
pp. 104903
Author(s):  
Julian Ashford ◽  
Michael Dinniman ◽  
Cassandra Brooks ◽  
Lian Wei ◽  
Guoping Zhu

2022 ◽  
Vol 8 (1) ◽  
pp. 65
Author(s):  
Giulio Barone ◽  
Cinzia Corinaldesi ◽  
Eugenio Rastelli ◽  
Michael Tangherlini ◽  
Stefano Varrella ◽  
...  

Fungi are a ubiquitous component of marine systems, but their quantitative relevance, biodiversity and ecological role in benthic deep-sea ecosystems remain largely unexplored. In this study, we investigated fungal abundance, diversity and assemblage composition in two benthic deep-sea sites of the Ross Sea (Southern Ocean, Antarctica), characterized by different environmental conditions (i.e., temperature, salinity, trophic availability). Our results indicate that fungal abundance (estimated as the number of 18S rDNA copies g−1) varied by almost one order of magnitude between the two benthic sites, consistently with changes in sediment characteristics and trophic availability. The highest fungal richness (in terms of Amplicon Sequence Variants−ASVs) was encountered in the sediments characterized by the highest organic matter content, indicating potential control of trophic availability on fungal diversity. The composition of fungal assemblages was highly diverse between sites and within each site (similarity less than 10%), suggesting that differences in environmental and ecological characteristics occurring even at a small spatial scale can promote high turnover diversity. Overall, this study provides new insights on the factors influencing the abundance and diversity of benthic deep-sea fungi inhabiting the Ross Sea, and also paves the way for a better understanding of the potential responses of benthic deep-sea fungi inhabiting Antarctic ecosystems in light of current and future climate changes.


2022 ◽  
Author(s):  
Wangwang Ye ◽  
Hermann W. Bange ◽  
Damian L. Arévalo-Martínez ◽  
Hailun He ◽  
Yuhong Li ◽  
...  

2022 ◽  
Author(s):  
Wangwang Ye ◽  
Hermann W. Bange ◽  
Damian L. Arévalo-Martínez ◽  
Hailun He ◽  
Yuhong Li ◽  
...  

Abstract. Dissolved methane (CH4) was measured at 9 stations along a transect at 75° S in the Ross Sea during austral summer in January 2020. CH4 undersaturation (mean: 82 ± 20 %) was found in the water column, with a mean air-sea CH4 flux density of −0.58 ± 0.48 μmol m−2 day−1, which suggests that the Ross Sea was a net sink for atmospheric CH4 during the austral summer. Simple box-model calculations revealed that the CH4 depletion should occur in the surface mixed layer because of CH4 oxidation and advection of CH4-poor waters. We propose that freshwater injection caused by sea-ice melting in summer dilutes CH4 concentrations within the surface layer and thus increases its potential for atmospheric CH4 uptake in the Ross Sea. Thus, we argue that both CH4 consumption and sea-ice melting are important drivers of CH4 undersaturation, which implies that the high-latitude area of the Southern Ocean is a sink for atmospheric CH4. We estimated that the Southern Ocean (> 65° S) takes up about 0.02 % of the global CH4 emissions and thus represents a minor sink for atmospheric CH4.


2022 ◽  
pp. 389-521
Author(s):  
Richard H. Levy ◽  
Aisling M. Dolan ◽  
Carlota Escutia ◽  
Edward G.W. Gasson ◽  
Robert M. McKay ◽  
...  

2021 ◽  
Author(s):  
wei Wang ◽  
meng Wan ◽  
miaojun Sun ◽  
weijie Jiang ◽  
ping Xu

Abstract The Ross Sea is located between Victoria Land and Mary Bird Land in West Antarctica. In this paper, the published gravity and magnetic data in the Ross Sea area are fused with the high-precision gravity and magnetic data measured by the ship. Then, The gravity anomaly data is used to invert the Moho depth by the Parker-Oldenburg method; the magnetic anomaly data is used to invert the Curie depth of the Ross Sea area by the power spectrum method. Finally, according to the inversion results of the Moho depth and Curie depth, the high-precision heat flow distribution in the Ross Sea area is calculated. And compared with the actual measured heat flow value and other inversion results, it shows that this inversion result has obtained a higher resolution. At the same time, the geothermal gradient is calculated by heat flow and thermal conductivity. According to the temperature-pressure equation for formation and storage of gas hydrate, the thickness of the gas hydrate stability zone in the study area was quantitatively calculated.


MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 633-640
Author(s):  
SANDIP R.OZA ◽  
R.K.K. SINGH ◽  
ABHINAV SRIVASTAVA ◽  
MIHIR K.DASH ◽  
I.M.L. DAS ◽  
...  

The growth and decay of sea ice are complex processes and have important feedback onto the oceanic and atmospheric circulation. In the Antarctic, sea ice variability significantly affects the primary productivity in the Southern Ocean and thereby negatively influences the performance and survival of species in polar ecosystem. In present days, the awareness on the sea ice variability in the Antarctic is not as matured as it is for the Arctic region. The present paper focuses on the inter-annual trends (1999-2009) observed in the monthly fractional sea ice cover in the Antarctic at 1 × 1 degree level, for the November and February months, derived from QuikSCAT scatterometer data. OSCAT scatterometer data from India’s Oceansat-2 satellite were used to asses the sea ice extent (SIE) observed in the month of November 2009 and February 2010 and its deviation from climatic maximum (1979-2002) sea ice extent (CMSIE). Large differences were observed between SIE and CMSIE, however, trend results show that it is due to the high inter-annual variability in sea ice cover. Spatial distribution of trends show the existence of positive and negative trends in the parts of Western Pacific Ocean, Ross Sea, Amundsen and Bellingshausen Seas (ABS), Weddell Sea and Indian ocean sector of southern ocean. Sea ice trends are compared with long-term SST trends (1982-2009) observed in the austral summer month of February. Large-scale cooling trend observed around Ross Sea and warming trend in ABS sector are the distinct outcome of the study.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alessandro Marrone ◽  
Daniele La Russa ◽  
Elvira Brunelli ◽  
Gianfranco Santovito ◽  
Mauro Francesco La Russa ◽  
...  

Antarctica represents a unique natural laboratory for ecotoxicological studies as it is characterized by low internal pollutants emissions but high external contamination levels. Indeed, warm temperatures promote pollutant evaporation (low latitudes), while cool temperatures (high latitudes) promote its deposition from the atmosphere on land/water. Metals are the most important pollutants in ecosystems and represent a serious and global threat to aquatic and terrestrial organisms. Since 2000, the risks posed by metals have led many States to ratify protocols aimed at reducing their emissions. Endemic Antarctic organisms represent excellent bioindicators in order to evaluate the efficacy of global measures adopted to mitigate pollutants release into the environment. In this study (supported by PNRA18-00133), we estimated the metals contamination levels and the metallothionein-1 expression in liver samples of two Antarctic fish species, the icefish Chionodraco hamatus and the red-blooded Trematomus bernacchii, collected in the same area during 2002 and 2014. The chosen area is located in the Ross Sea, a unique area as it is also isolated from the rest of the Southern Ocean. The analysis of contamination trends throughout this period showed, in both species, a significant increase over time of metals bioaccumulation and metallothionein-1 expression. In addition, our result clearly indicated that the detoxifying ability of the two organisms analyzed greatly differs, probably due to haemoglobin presence/absence. Our work represents an important early step to obtain valuable information in conservation strategies for both Antarctic and non-Antarctic ecosystems.


Sign in / Sign up

Export Citation Format

Share Document