Lagrangian Detection of Wind Shear for Landing Aircraft

2013 ◽  
Vol 30 (12) ◽  
pp. 2808-2819 ◽  
Author(s):  
Hossein Amini Kafiabad ◽  
Pak Wai Chan ◽  
George Haller

Abstract Recent studies have shown that aerial disturbances affecting landing aircraft have a coherent signature in the Lagrangian aerial particle dynamics inferred from ground-based lidar scans. Specifically, attracting Lagrangian coherent structures (LCSs) mark the intersection of localized material upwelling within the cone of the lidar scan. This study tests the detection power of LCSs on historical landing data and corresponding pilot reports of disturbances from Hong Kong International Airport. The results show that a specific LCS indicator, the gradient of the finite-time Lyapunov exponent (FTLE) field along the landing path, is a highly efficient marker of turbulent upwellings. In particular, in the spring season, projected FTLE gradients closely approach the efficiency of the wind shear alert system currently in operation at the airport, even though the latter system relies on multiple sources of data beyond those used in this study. This shows significant potential for the operational use of FTLE gradients in the real-time detection of aerial disturbances over airports.

2015 ◽  
Vol 25 (05) ◽  
pp. 1550076 ◽  
Author(s):  
Tian Ma ◽  
Erik M. Bollt

We introduce a definition of finite-time curvature evolution along with our recent study on shape coherence in nonautonomous dynamical systems. Comparing to slow evolving curvature preserving the shape, large curvature growth points reveal the dramatic change on shape such as the folding behaviors in a system. Closed trough curves of low finite-time curvature (FTC) evolution field indicate the existence of shape coherent sets, and troughs in the field indicate the most significant shape coherence. Here, we will demonstrate these properties of the FTC, as well as contrast to the popular Finite-Time Lyapunov Exponent (FTLE) computation, often used to indicate hyperbolic material curves as Lagrangian Coherent Structures (LCS). We show that often the FTC troughs are in close proximity to the FTLE ridges, but in other scenarios, the FTC indicates entirely different regions.


2011 ◽  
Vol 50 (10) ◽  
pp. 2167-2183 ◽  
Author(s):  
Wenbo Tang ◽  
Pak Wai Chan ◽  
George Haller

AbstractUsing observational data from coherent Doppler light detection and ranging (lidar) systems situated at the Hong Kong International Airport (HKIA), the authors extract Lagrangian coherent structures (LCS) intersecting the flight path of landing aircraft. They study the time evolution of LCS and compare them with onboard wind shear and altitude data collected during airplane approaches. Their results show good correlation between LCS extracted from the lidar data and updrafts and downdrafts experienced by landing aircraft. Overall, LCS analysis shows promise as a robust real-time tool to detect unsteady flow structures that impact airplane traffic.


2011 ◽  
Vol 50 (2) ◽  
pp. 325-338 ◽  
Author(s):  
Wenbo Tang ◽  
Pak Wai Chan ◽  
George Haller

Abstract The accurate real-time detection of turbulent airflow patterns near airports is important for safety and comfort in commercial aviation. In this paper, a method is developed to identify Lagrangian coherent structures (LCS) from horizontal lidar scans at Hong Kong International Airport (HKIA) in China. LCS are distinguished frame-independent material structures that create localized attraction, repulsion, or high shear of nearby trajectories in the flow. As such, they are the fundamental structures behind airflow patterns such as updrafts, downdrafts, and wind shear. Based on a recently developed finite-domain–finite-time Lyapunov exponent (FDFTLE) algorithm from Tang et al. and on new Lagrangian diagnostics presented in this paper that are pertinent to the extracted FDFTLE ridges, the authors differentiate LCS extracted from lidar data. It is found that these LCS derived from horizontal lidar scans compare well to convergence and divergence suggested by vertical slice scans. At HKIA, horizontal scans are predominant: they cover much bigger azimuthal ranges as compared with only two azimuthal angles from the vertical scans. LCS extracted from horizontal scans are thus advantageous in providing organizing turbulence structures over the entire observational domain as compared with a single line along the vertical scan direction. In Part II of this study, the authors will analyze the evolution of LCS and their impacts on landing aircraft based on recorded flight data.


2015 ◽  
Vol 22 (6) ◽  
pp. 663-677 ◽  
Author(s):  
A. E. BozorgMagham ◽  
S. D. Ross ◽  
D. G. Schmale

Abstract. The finite-time Lyapunov exponent (FTLE) is a powerful Lagrangian concept widely used for describing large-scale flow patterns and transport phenomena. However, field experiments usually have modest scales. Therefore, it is necessary to bridge the gap between the concept of FTLE and field experiments. In this paper, two independent observations are discussed: (i) approximation of the local FTLE time series at a fixed location as a function of known distances between the destination (or source) points of released (or collected) particles and local velocity, and (ii) estimation of the distances between the destination (or source) points of the released (or collected) particles when consecutive release (or sampling) events are performed at a fixed location. These two observations lay the groundwork for an ansatz methodology that can practically assist in field experiments where consecutive samples are collected at a fixed location, and it is desirable to attribute source locations to the collected particles, and also in planning of optimal local sampling of passive particles for maximal diversity monitoring of atmospheric assemblages of microorganisms. In addition to deterministic flows, the more realistic case of unresolved turbulence and low-resolution flow data that yield probabilistic source (or destination) regions are studied. It is shown that, similar to deterministic flows, Lagrangian coherent structures (LCS) and local FTLE can describe the separation of probabilistic source (or destination) regions corresponding to consecutively collected (or released) particles.


Author(s):  
Amirhossein Arzani ◽  
Shawn C. Shadden

Abdominal aortic aneurysms (AAA) are characterized by disturbed flow patterns, low and oscillatory wall shear stress with high gradients, increased particle residence time, and mild turbulence. Diameter is the most common metric for rupture prediction, although this metric can be unreliable. We hypothesize that understanding the flow topology and mixing inside AAA could provide useful insight into mechanisms of aneurysm growth. AAA morphology has high variability, as with AAA hemodynamics, and therefore we consider patient-specific analyses over several small to medium sized AAAs. Vortical patterns dominate AAA hemodynamics and traditional analyses based on the Eulerian fields (e.g. velocity) fail to convey the complex flow structures. The computation of finite-time Lyapunov exponent (FTLE) fields and underlying Lagrangian coherent structures (LCS) help reveal a Lagrangian template for quantifying the flow [1].


2008 ◽  
Vol 25 (5) ◽  
pp. 637-655 ◽  
Author(s):  
C. M. Shun ◽  
P. W. Chan

Abstract In December 2005, operational wind shear alerting at the Hong Kong International Airport (HKIA) reached an important milestone with the launch of the automatic Lidar (light detection and ranging) Windshear Alerting System (LIWAS). This signifies that the anemometer-based and radar-based wind shear detection technologies deployed worldwide in the twentieth century have been further advanced by the addition of the lidar—a step closer to all-weather coverage. Unlike the microburst and gust front, which have a well-defined coherent vertical structure in the lowest several hundred meters of the atmosphere, terrain-induced wind shear tends to have high spatial and temporal variability. To detect the highly changeable winds to be encountered by the aircraft under terrain-induced wind shear situations, the Hong Kong Observatory devises an innovative glide path scan (GPScan) strategy for the lidar, pointing the laser beam toward the approach and departure glide paths, with the changes in azimuth and elevation angles concerted. The purpose of the GPScans is to derive the headwind profiles and hence the wind shear along the glide paths. Developed based on these GPScans, LIWAS is able to capture about 76% of the wind shear events reported by pilots over the most-used approach corridor under clear-air conditions. During the past two years, further developments of the lidar took place at HKIA, including the use of runway-specific lidar to further enhance the wind shear detection performance.


Sign in / Sign up

Export Citation Format

Share Document