Three-Dimensional Shape and Fall Velocity Measurements of Snowflakes Using a Multiangle Snowflake Imager

2017 ◽  
Vol 34 (8) ◽  
pp. 1763-1781 ◽  
Author(s):  
Haruya Minda ◽  
Norio Tsuda ◽  
Yasushi Fujiyoshi

AbstractThis paper describes a Multiangle Snowflake Imager (MSI) designed to capture the pseudo-three-dimensional (3D) shape and the fall velocity of individual snowflakes larger than 1.5 mm in size. Four height-offset line-image scanners estimate fall velocities and the four-angle silhouettes are used to reconstruct the 3D snowflake shapes. The 3D shape reconstruction is tested using reference objects (spheres, spheroids, cubes, and plates). The four-silhouette method of the MSI improves the representation of the particle shape and volume compared to two-silhouette methods, such as the two-dimensional video disdrometer (2DVD). The volume (equivolumetric diameters) of snowflakes estimated by the four-silhouette method is approximately 44% (13%) smaller than that estimated by the two-silhouette method. The ability of the imager to measure the fall velocity and particle size distributions based on the silhouette width and the equivolumetric diameter of 3D-shaped particles is verified via a comparison with the 2DVD in three snowfall events.

2010 ◽  
Vol 143-144 ◽  
pp. 768-772
Author(s):  
Shao Yan Gai ◽  
Fei Peng Da

A surface reconstruction method for material shape analysis is presented. The three-dimensional shape reconstruction system detects object surface based on optical principle. A series of gratings are projected to the object, and the projected gratings are deformed by the object surface. From images of the deformed gratings, three-dimensional profile of the material surface can be obtained. The basic aspects of the method are discussed, including the vision geometry, the light projection and code principle. The proposed method can deal with objects with various discontinuities on the material surface, thus increasing the flexibility and robustness of shape reconstruction process. The experimental results show the efficiency of the method, the material surface can be reconstructed with high precision in various applications.


2013 ◽  
Author(s):  
Xiaoyang Yu ◽  
Haibin Wu ◽  
Xue Yang ◽  
Shuang Yu ◽  
Beiyi Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document