Analyzing the Diurnal Cycle by Bayesian Interpolation on a Sphere for Mapping GNSS Radio Occultation Data

2021 ◽  
Vol 38 (5) ◽  
pp. 951-961
Author(s):  
Stephen S. Leroy ◽  
Chi O. Ao ◽  
Olga P. Verkhoglyadova ◽  
Mayra I. Oyola

AbstractBayesian interpolation has previously been proposed as a strategy to construct maps of radio occultation (RO) data, but that proposition did not consider the diurnal dimension of RO data. In this work, the basis functions of Bayesian interpolation are extended into the domain of the diurnal cycle, thus enabling monthly mapping of radio occultation data in synoptic time and analysis of the atmospheric tides. The basis functions are spherical harmonics multiplied by sinusoids in the diurnal cycle up to arbitrary spherical harmonic degree and diurnal cycle harmonic. Bayesian interpolation requires a regularizer to impose smoothness on the fits it produces, thereby preventing the overfitting of data. In this work, a formulation for the regularizer is proposed and the most probable values of the parameters of the regularizer determined. Special care is required when obvious gaps in the sampling of the diurnal cycle are known to occur in order to prevent the false detection of statistically significant high-degree harmonics of the diurnal cycle in the atmosphere. Finally, this work probes the ability of Bayesian interpolation to generate a valid uncertainty analysis of the fit. The postfit residuals of Bayesian interpolation are dominated not by measurement noise but by unresolved variability in the atmosphere, which is statistically nonuniform across the globe, thus violating the central assumption of Bayesian interpolation. The problem is ameliorated by constructing maps of RO data using Bayesian interpolation that partially resolve the temporal variability of the atmosphere, constructing maps for approximately every 3 days of RO data.

2012 ◽  
Vol 29 (8) ◽  
pp. 1062-1074 ◽  
Author(s):  
Stephen S. Leroy ◽  
Chi O. Ao ◽  
Olga Verkhoglyadova

Abstract Bayesian interpolation for mapping GPS radio occultation data on a sphere is explored and its performance evaluated. Bayesian interpolation is ideally suited to the task of fitting data randomly and nonuniformly distributed with unknown error without overfitting the data. The geopotential height at dry pressure 200 hPa is simulated as data with theoretical distributions of the Challenging Mini-Satellite Payload (CHAMP) and of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC). The simulated CHAMP data are found to be best fit with a spherical harmonic basis of 14th degree; the COSMIC data with a spherical harmonic basis of 20th degree. The best regularizer mimics a spline fit, and relaxing the penalty for purely meridional structures or for the global mean yields little advantage. Climatologies are most accurately established by binning in ≃2-day intervals to best resolve synoptic structures in space and time. Finally, Bayesian interpolation is shown to negate a source of systematic sampling error obtained in binning and averaging highly nonuniform data but to incur another systematic error due to incomplete resolution of the background atmosphere, notably in the Southern Hemisphere.


Author(s):  
John Bosco Habarulema ◽  
Daniel Okoh ◽  
Dalia Burešová ◽  
Babatunde Rabiu ◽  
Mpho Tshisaphungo ◽  
...  

2021 ◽  
Author(s):  
Özgür Karatekin ◽  
Ananya Krishnan ◽  
Nayeem Ebrahimkutty ◽  
Greg Henry ◽  
Ahmed El Fadhel ◽  
...  

SOLA ◽  
2010 ◽  
Vol 6 ◽  
pp. 81-84 ◽  
Author(s):  
Hiromu Seko ◽  
Masaru Kunii ◽  
Yoshinori Shoji ◽  
Kazuo Saito

Author(s):  
Chi O. Ao ◽  
George A. Hajj ◽  
Thomas K. Meehan ◽  
Stephen S. Leroy ◽  
E. Robert Kursinski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document