scholarly journals Application of Binary Searching for Item Exposure Control in Cognitive Diagnostic Computerized Adaptive Testing

2017 ◽  
Vol 41 (7) ◽  
pp. 561-576 ◽  
Author(s):  
Chanjin Zheng ◽  
Chun Wang

Cognitive diagnosis has emerged as a new generation of testing theory for educational assessment after the item response theory (IRT). One distinct feature of cognitive diagnostic models (CDMs) is that they assume the latent trait to be discrete instead of continuous as in IRT. From this perspective, cognitive diagnosis bears a close resemblance to searching problems in computer science and, similarly, item selection problem in cognitive diagnostic computerized adaptive testing (CD-CAT) can be considered as a dynamic searching problem. Previously, item selection algorithms in CD-CAT were developed from information indices in information science and attempted to achieve a balance among several objectives by assigning different weights. As a result, they suffered from low efficiency from a tug-of-war competition among multiple goals in item selection and, at the same time, put an undue responsibility of assigning the weights for these goals by trial and error on users. Based on the searching problem perspective on CD-CAT, this article adapts the binary searching algorithm, one of the most well-known searching algorithms in searching problems, to item selection in CD-CAT. The two new methods, the stratified dynamic binary searching (SDBS) algorithm for fixed-length CD-CAT and the dynamic binary searching (DBS) algorithm for variable-length CD-CAT, can achieve multiple goals without any of the aforementioned issues. The simulation studies indicate their performances are comparable or superior to the previous methods.

2019 ◽  
Vol 44 (3) ◽  
pp. 182-196
Author(s):  
Jyun-Hong Chen ◽  
Hsiu-Yi Chao ◽  
Shu-Ying Chen

When computerized adaptive testing (CAT) is under stringent item exposure control, the precision of trait estimation will substantially decrease. A new item selection method, the dynamic Stratification method based on Dominance Curves (SDC), which is aimed at improving trait estimation, is proposed to mitigate this problem. The objective function of the SDC in item selection is to maximize the sum of test information for all examinees rather than maximizing item information for individual examinees at a single-item administration, as in conventional CAT. To achieve this objective, the SDC uses dominance curves to stratify an item pool into strata with the number being equal to the test length to precisely and accurately increase the quality of the administered items as the test progresses, reducing the likelihood that a high-discrimination item will be administered to an examinee whose ability is not close to the item difficulty. Furthermore, the SDC incorporates a dynamic process for on-the-fly item–stratum adjustment to optimize the use of quality items. Simulation studies were conducted to investigate the performance of the SDC in CAT under item exposure control at different levels of severity. According to the results, the SDC can efficiently improve trait estimation in CAT through greater precision and more accurate trait estimation than those generated by other methods (e.g., the maximum Fisher information method) in most conditions.


2018 ◽  
Vol 42 (8) ◽  
pp. 677-694 ◽  
Author(s):  
Dongbo Tu ◽  
Yuting Han ◽  
Yan Cai ◽  
Xuliang Gao

Multidimensional computerized adaptive testing (MCAT) has been developed over the past decades, and most of them can only deal with dichotomously scored items. However, polytomously scored items have been broadly used in a variety of tests for their advantages of providing more information and testing complicated abilities and skills. The purpose of this study is to discuss the item selection algorithms used in MCAT with polytomously scored items (PMCAT). Several promising item selection algorithms used in MCAT are extended to PMCAT, and two new item selection methods are proposed to improve the existing selection strategies. Two simulation studies are conducted to demonstrate the feasibility of the extended and proposed methods. The simulation results show that most of the extended item selection methods for PMCAT are feasible and the new proposed item selection methods perform well. Combined with the security of the pool, when two dimensions are considered (Study 1), the proposed modified continuous entropy method (MCEM) is the ideal of all in that it gains the lowest item exposure rate and has a relatively high accuracy. As for high dimensions (Study 2), results show that mutual information (MUI) and MCEM keep relatively high estimation accuracy, and the item exposure rates decrease as the correlation increases.


2019 ◽  
Vol 44 (5) ◽  
pp. 346-361
Author(s):  
Jing Yang ◽  
Hua-Hua Chang ◽  
Jian Tao ◽  
Ningzhong Shi

Cognitive diagnostic computerized adaptive testing (CD-CAT) aims to obtain more useful diagnostic information by taking advantages of computerized adaptive testing (CAT). Cognitive diagnosis models (CDMs) have been developed to classify examinees into the correct proficiency classes so as to get more efficient remediation, whereas CAT tailors optimal items to the examinee’s mastery profile. The item selection method is the key factor of the CD-CAT procedure. In recent years, a large number of parametric/nonparametric item selection methods have been proposed. In this article, the authors proposed a series of stratified item selection methods in CD-CAT, which are combined with posterior-weighted Kullback–Leibler (PWKL), nonparametric item selection (NPS), and weighted nonparametric item selection (WNPS) methods, and named S-PWKL, S-NPS, and S-WNPS, respectively. Two different types of stratification indices were used: original versus novel. The performances of the proposed item selection methods were evaluated via simulation studies and compared with the PWKL, NPS, and WNPS methods without stratification. Manipulated conditions included calibration sample size, item quality, number of attributes, number of strata, and data generation models. Results indicated that the S-WNPS and S-NPS methods performed similarly, and both outperformed the S-PWKL method. And item selection methods with novel stratification indices performed slightly better than the ones with original stratification indices, and those without stratification performed the worst.


Sign in / Sign up

Export Citation Format

Share Document