exposure control
Recently Published Documents


TOTAL DOCUMENTS

568
(FIVE YEARS 83)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Chien-Ping Wang ◽  
Burn Jeng Lin ◽  
Pin-Jiun Wu ◽  
Jiaw-Ren Shih ◽  
Yue-Der Chih ◽  
...  

AbstractAn on-wafer micro-detector for in situ EUV (wavelength of 13.5 nm) detection featuring FinFET CMOS compatibility, 1 T pixel and battery-less sensing is demonstrated. Moreover, the detection results can be written in the in-pixel storage node for days, enabling off-line and non-destructive reading. The high spatial resolution micro-detectors can be used to extract the actual parameters of the incident EUV on wafers, including light intensity, exposure time and energy, key to optimization of lithographic processes in 5 nm FinFET technology and beyond.


2021 ◽  
Author(s):  
Thomas Werncke ◽  
Marius Kemling ◽  
Stanislav Tashenov ◽  
Jan B. Hinrichs ◽  
Timo C. Meine ◽  
...  

Author(s):  
Seán Cournane ◽  
Matthew Reade ◽  
Jackie McCavana ◽  
Julie Lucey

Abstract Automatic Exposure Control (AEC) systems optimise radiation dose to the patient while providing adequate image quality. This study examined the effect that the increased localiser region of interest of a hybrid PET/CT has on the CTDIvol, focussing on the role of extraneous objects and patient attenuation profiles. A Siemens Biograph™ 16 Horizon PET/CT system and a Siemens Somatom Sensation 64, both employing the Siemens CAREDose 4D AEC system, were used for acquisition of a range of phantoms. The effect of patient miscentring and effect of the patient bed impinging on the localiser was established and modelled. For PA localiser scans, a non-linear relationship between miscentring and CTDIvol was observed, attributable to the presence of the patient bed being misinterpreted as the patient width. The model identified how the presence of the patient bed led to an increase in the CTDIvol significantly larger than expected (~12%, or 1 mSv), particularly prevalent for smaller patients.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1574
Author(s):  
Zoran S. Ilić ◽  
Lidija Milenković ◽  
Ljubomir Šunić ◽  
Nadica Tmušić ◽  
Jasna Mastilović ◽  
...  

The aim of this study was to determine the antimicrobial activity of essential oils obtained from sweet basil (Ocimum basilicum L. cv. ‘Genovese’) cultivated in the open field under different shading conditions (red, blue, and pearl nets with a shade index of 50% and full sunlight exposure (control plants)), harvested at different times. The antimicrobial activity of basil essential oils (BEOs) obtained from all samples was determined for four microorganisms, while determinations for an additional five microorganisms included samples from non-shaded plants, plants grown under red and pearl nets, and second harvest of plants grown under blue net. Basil essential oil exhibited antimicrobial activity surpassing the activity of relevant commercial antibiotics regardless of growing conditions in the case of B. cereus, K. pneumoniae and C. albicans, while superior antimicrobial activity was exhibited in the case of essential oils from plants grown under blue nets in the case of S. aureus, E. coli and P. vulgaris. The influence of the application of colored shading nets was highly significant (p < 0.01) in the cases of all analyzed microorganisms except C. albicans and P. aeruginosa, while the influence of harvest time was proven in the cases of all microorganisms except K. pneumoniae. ANOVA proved that antimicrobial activities are highly dependent on the methods of plant production, shading treatment, and harvest time. Obtained results are discussed in relation to previously determined composition and yield of essential oils from basil grown under shade nets and harvested in different periods.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojian Sun ◽  
Yizhu Gao ◽  
Tao Xin ◽  
Naiqing Song

Although classification accuracy is a critical issue in cognitive diagnostic computerized adaptive testing, attention has increasingly shifted to item exposure control to ensure test security. In this study, we developed the binary restrictive threshold (BRT) method to balance measurement accuracy and item exposure. In addition, a simulation study was conducted to evaluate its performance. The results indicated that the BRT method performed better than the restrictive progressive (RP) and stratified dynamic binary searching (SDBS) approaches but worse than the restrictive threshold (RT) method in terms of classification accuracy. With respect to item exposure control, the BRT method exhibited noticeably stronger performance compared with the RT method, even though its performance was not as high as that of the RP and SDBS methods.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sarah-May Gould ◽  
Jane Mackewn ◽  
Sugama Chicklore ◽  
Gary J. R. Cook ◽  
Andrew Mallia ◽  
...  

Abstract Background A significant proportion of the radiation dose from a PET-CT examination is dependent on the CT protocol, which should be optimised for clinical purposes. Matching protocols on different scanners within an imaging centre is important for the consistency of image quality and dose. This paper describes our experience translating low-dose CT protocols between scanner models utilising different automatic exposure control (AEC) methods and reconstruction algorithms. Methods The scanners investigated were a newly installed Siemens Biograph mCT PET with 64-slice SOMATOM Definition AS CT using sinogram affirmed iterative reconstruction (SAFIRE) and two GE Discovery 710 PET scanners with 128-slice Optima 660 CT using adaptive statistical reconstruction (ASiR). Following exploratory phantom work, 33 adult patients of various sizes were scanned using the Siemens scanner and matched to patients scanned using our established GE protocol to give 33 patient pairs. A comparison of volumetric CT dose index (CTDIvol) and image noise within these patient pairs informed optimisation, specifically for obese patients. Another matched patient study containing 27 patient pairs was used to confirm protocol matching. Size-specific dose estimates (SSDEs) were calculated for patients in the second cohort. With the acquisition protocol for the Siemens scanner determined, clinicians visually graded the images to identify optimal reconstruction parameters. Results In the first matched patient study, the mean percentage difference in CTDIvol for Siemens compared to GE was − 10.7% (range − 41.7 to 50.1%), and the mean percentage difference in noise measured in the patients’ liver was 7.6% (range − 31.0 to 76.8%). In the second matched patient study, the mean percentage difference in CTDIvol for Siemens compared to GE was − 20.5% (range − 43.1 to 1.9%), and the mean percentage difference in noise was 19.8% (range − 27.0 to 146.8%). For these patients, the mean SSDEs for patients scanned on the Siemens and GE scanners were 3.27 (range 2.83 to 4.22) mGy and 4.09 (range 2.81 to 4.82) mGy, respectively. The analysis of the visual grading study indicated no preference for any of the SAFIRE strengths. Conclusions Given the different implementations of acquisition parameters and reconstruction algorithms between vendors, careful consideration is required to ensure optimisation and standardisation of protocols.


Sign in / Sign up

Export Citation Format

Share Document