Coordinated Perimeter Flow and Variable Speed Limit Control for Mixed Freeway and Urban Networks

Author(s):  
Rebeka Yocum ◽  
Vikash V. Gayah

Recent studies have leveraged the existence of network macroscopic fundamental diagrams (MFD) to develop regional control strategies for urban traffic networks. Existing MFD-based control strategies focus on vehicle movement within and across regions of an urban network and do not consider how freeway traffic can be controlled to improve overall traffic operations in mixed freeway and urban networks. The purpose of this study is to develop a coordinated traffic management scheme that simultaneously implements perimeter flow control on an urban network and variable speed limits (VSL) on a freeway to reduce total travel time in such a mixed network. By slowing down vehicles traveling along the freeway, VSL can effectively meter traffic exiting the freeway into the urban network. This can be particularly useful since freeways often have large storage capacities and vehicles accumulating on freeways might be less disruptive to overall system operations than on urban streets. VSL can also be used to change where freeway vehicles enter the urban network to benefit the entire system. The combined control strategy is implemented in a model predictive control framework with several realistic constraints, such as gradual reductions in freeway speed limit. Numerical tests suggest that the combined implementation of VSL and perimeter metering control can improve traffic operations compared with perimeter metering alone.

2015 ◽  
Vol 42 (7) ◽  
pp. 477-489 ◽  
Author(s):  
Ying Luo ◽  
M. Hadiuzzaman ◽  
Jie Fang ◽  
Tony Z. Qiu

Over the past few decades, several active traffic control methods have been proposed to improve freeway efficiency at bottleneck locations. Variable speed limit (VSL) is one of these effective controls. Previous studies have evaluated VSL control, but primarily during recurrent congestion only. This study focuses on evaluating the performance of VSL control for both recurrent and non-recurrent congestion. To assess the effectiveness of a previously proposed VSL control in a real-world situation, this study has three evaluation objectives: (1) examine the control performance when recurrent and (or) non-recurrent congestion occurs; (2) assess the effectiveness of the control when a queue encounters the VSL sign; and (3) consider the impact of system detection delay in VSL control. Comparative experiments for Whitemud Drive in Edmonton, Alberta, Canada, are simulated in the VISSIM platform, and traffic performance is compared among scenarios with and without control. The simulation results show that VSL improves mobility for both recurrent and non-recurrent congestion. The VSL control reduces total travel time, and improves total travel distance and total flow. Furthermore, it slows down the shockwave propagation speed, improves the average speed on most of the freeway segments, and reduces the duration of traffic recovery.


2020 ◽  
Vol 21 (4) ◽  
pp. 295-302
Author(s):  
Haris Ballis ◽  
Loukas Dimitriou

AbstractSmart Cities promise to their residents, quick journeys in a clean and sustainable environment. Despite, the benefits accrued by the introduction of traffic management solutions (e.g. improved travel times, maximisation of throughput, etc.), these solutions usually fall short on assessing the environmental impact around the implementation areas. However, environmental performance corresponds to a primary goal of contemporary mobility planning and therefore, solutions guaranteeing environmental sustainability are significant. This study presents an advanced Artificial Intelligence-based (AI) signal control framework, able to incorporate environmental considerations into the core of signal optimisation processes. More specifically, a highly flexible Reinforcement Learning (RL) algorithm has been developed towards the identification of efficient but-more importantly-environmentally friendly signal control strategies. The methodology is deployed on a large-scale micro-simulation environment able to realistically represent urban traffic conditions. Alternative signal control strategies are designed, applied, and evaluated against their achieved traffic efficiency and environmental footprint. Based on the results obtained from the application of the methodology on a core part of the road urban network of Nicosia, Cyprus the best strategy achieved a 4.8% increase of the network throughput, 17.7% decrease of the average queue length and a remarkable 34.2% decrease of delay while considerably reduced the CO emissions by 8.1%. The encouraging results showcase ability of RL-based traffic signal controlling to ensure improved air-quality conditions for the residents of dense urban areas.


Sign in / Sign up

Export Citation Format

Share Document