driver response
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 35)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 7 ◽  
pp. 32-40
Author(s):  
Zawar H. Khan ◽  
T. Aaron Gulliver ◽  
Khurram S. Khattak

A new model is proposed to characterize changes in traffic at transitions. These changes are affected by driver response. The distance headway between vehicles is considered as it affects driver behavior. Driver response is quick with a small distance headway and slow when the distance headway is large. The variations in traffic are greater with a slow driver while traffic is smooth with a quick driver. A model is developed which characterizes traffic based on driver response and distance headway. This model is compared with the well-known and widely employed Zhang and PW models. The Zhang model characterizes driver response at transitions using an equilibrium velocity distribution and ignores distance headway and driver response. Traffic flow in the PW model is characterized using only a velocity constant. Roe decomposition is employed to evaluate the Zhang, PW, and proposed models over a 270 m circular (ring) road. Results are presented which show that Zhang model provides unrealistic results. The corresponding behavior with the proposed model has large variations in flow with a slow driver but is smooth with a quick driver. The PW model provides smooth changes in flow according to the velocity constant, but the behavior is unrealistic because it is not based on traffic physics. Doi: 10.28991/CEJ-SP2021-07-03 Full Text: PDF


Author(s):  
Swaroop Dinakar ◽  
Jeffrey W. Muttart ◽  
Darlene E. Edewaard ◽  
Michael Giannone ◽  
Connor Dickson

A cut-in or cut-off scenario involves a vehicle intruding into the path of another vehicle traveling in the same direction. These lane changes can lead to potentially dangerous situations, either a sideswipe or a rear-end crash. In this study, 552 cut-in events were analyzed, including four crash and 548 near-crash events from the Second Strategic Highway Research Program (SHRP-2) data set. Video and onboard-data-recorder data from the responding vehicle were used to analyze various factors associated with drivers’ responses. Driver response times were measured from three different event onsets, and the effects of different factors on the respective response times were measured. These factors included the behavior of the subject driver, the behavior of the intruding vehicle/principal other vehicle (POV), and different environmental and infrastructural factors. The results showed that drivers responded more slowly when the POV took longer to move laterally to the subject driver’s lane edge and faster when this time was short. Similarly, drivers responded faster to merging vehicles that started from a stop. Yet, response times were no different when the POV utilized a directional signal. These results point to a kinematic threshold involving lateral distance and lateral speed that best describes how drivers were triggered to respond. Drivers also responded faster near intersections, and at night. The results can be utilized to design crash mitigation systems in autonomous vehicles, as well as non-automated vehicles, to supplement human responses where their abilities may be lacking.


2021 ◽  
Author(s):  
Wenxiu Zheng ◽  
Enlou Zhang ◽  
Rong Wang ◽  
Peter Guy Langdon

2021 ◽  
Author(s):  
Shakir Mahmud ◽  
Babak Safaei

Research was conducted at a freeway exit ramp with significant horizontal curvature to evaluate the effectiveness of dynamic speed feedback signs (DSFS) as a speed reduction countermeasure. Several aspects of the DSFS were evaluated, including display size, border type, lateral installation position, and vehicle detection range. Three different full-matrix DSFS were utilized, which included: 15-inch display panel with yellow border, 18-inch display panel with yellow border, and 18-inch display panel with no border. Each sign was individually installed and tested at identical locations near the start of the exit ramp curve, in both the traditional right-side-mount and an alternative forward-mount within the exit gore area. Speed data and message activation location were collected for vehicles approaching and entering into the curve across the various sign test conditions. Overall, the presence of a DSFS positioned near the start of the curve resulted in curve entry speeds that were, on average, 3.5 mph lower than without a DSFS present at the site. The lowest curve entry speeds were observed for cases where the message activated when vehicles were within 250 to 400 ft of the curve. Interestingly, earlier message activation did not contribute to further speed reductions, although later activation substantially diminished the speed reduction effects. Regarding DSFS lateral position, both the side-mounted and forward-mounted DSFS installations resulted in similar curve entry speeds. Furthermore, there were no discernable differences in curve entry speeds between the 15-inch and 18-inch display panels, although the inclusion of a yellow sign border improved performance.


Author(s):  
Bayu Erfianto ◽  
Andrian Rahmatsyah

Nowadays, four-wheeled vehicles are equipped with an event data recorder (EDR) device to record sensors data. With advances in-memory technology, EDR provides evidence for forensic analysis after an accident happens, that uses information technology to facilitate forensic analysis to provide complete and valuable results using digital investigations. Several types of research have been conducted to reconstruct accidents from forensic data and Fuzzy Logic is an alternative method for classifying crash data taken from the accelerometer due to less complexity of implementation. Vehicle braking data is one of the most important evidence for digital investigation, since braking is a complex process determined by many factors, such as the condition of the vehicle, road construction, and the driver’s physiological condition. However, the existing digital investigation still process vehicle speed, deceleration, and varia- tion time of deceleration (known as a jerk) in separated manner to determine braking distance, driver response time, and braking category. The problem identified in this paper is how to use deceleration, velocity, and jerk to categorize the braking evidence forensic analysis. In this paper, forensic analysis is limited to produce forensic evident of braking events based on the collected data. The contribution of this paper is to propose a braking detection model by combining acceleration, speed, and jerk data into a Fuzzy Inference System. As a result, a forensic analysis of braking data can better understand the braking maneuvers, which can be further developed to identify the cause of the accident and provide recommendations on which actions to include in future analyses.


Author(s):  
Md Shakir Mahmud ◽  
Matthew Motz ◽  
Travis Holpuch ◽  
Jordan Hankin ◽  
Anthony J. Ingle ◽  
...  

A series of field evaluations was performed at three freeway interchange ramps in Michigan that possessed significant horizontal curvature to assess the impacts of a dynamic speed feedback sign (DSFS) on driver speed selection and brake response while approaching and entering the ramp curve. A DSFS with a 15 in. full-matrix display was temporarily installed at each of the three exit ramp locations. The sign was programmed to display the same feedback message at each location, which included the speed number for all approaching vehicles, which alternated with a “Slow Down” message for vehicles approaching above 40 mph. The effectiveness of the feedback sign was tested across various sign locations (at the point of curvature versus 350 ft upstream), interchange types (system versus service), time of day (peak versus off-peak), light conditions (daylight versus darkness), and vehicle types (passenger vehicles versus trucks). Compared with the pre-DSFS site condition, the DSFS reduced curve entry speeds and improved brake response at two of the three ramp locations. In general, the greatest beneficial effects on driver behavior were achieved when the DSFS was positioned at the point of curvature, during which curve entry speeds were reduced by approximately 2 mph. These findings were consistent between the system interchanges and service interchanges, and across all vehicle types. The DSFS was also found to be most effective during daytime off-peak periods compared with peak periods and at night. Further evaluation of DSFS at additional ramp locations, and considering an expanded set of conditions, is recommended.


Author(s):  
Zhongke Xiang ◽  
Feifei Xiang

A restraint protection system for front row occupant is designed according to the collision danger level. An algorithm based on driver response time margin is designed to determine the danger level of collision. The algorithm gives different possibility of collision, corresponding to different danger level, and corresponding starting different constraint protection device. The simulation model of automobile frontal collision was established in the dynamic simulation software MADYMO and verified by experiment. Compared with the traditional occupant restraint protection system, the simulation results show that the proposed active restraint protection system improves the protection effect of the occupant’s head and hip, while the damage evaluation indexes such as peak neck bending moment, chest acceleration and chest compression decrease obviously. Therefore, the designed active occupant restraint protection system can effectively reduce the degree of occupant injury.


2021 ◽  
Vol 21 (5) ◽  
pp. 3593-3605
Author(s):  
Peter Sherman ◽  
Meng Gao ◽  
Shaojie Song ◽  
Alex T. Archibald ◽  
Nathan Luke Abraham ◽  
...  

Abstract. The South Asian summer monsoon supplies over 80 % of India's precipitation. Industrialization over the past few decades has resulted in severe aerosol pollution in India. Understanding monsoonal sensitivity to aerosol emissions in general circulation models (GCMs) could improve predictability of observed future precipitation changes. The aims here are (1) to assess the role of aerosols in India's monsoon precipitation and (2) to determine the roles of local and regional emissions. For (1), we study the Precipitation Driver Response Model Intercomparison Project experiments. We find that the precipitation response to changes in black carbon is highly uncertain with a large intermodel spread due in part to model differences in simulating changes in cloud vertical profiles. Effects from sulfate are clearer; increased sulfate reduces Indian precipitation, a consistency through all of the models studied here. For (2), we study bespoke simulations, with reduced Chinese and/or Indian emissions in three GCMs. A significant increase in precipitation (up to ∼20 %) is found only when both countries' sulfur emissions are regulated, which has been driven in large part by dynamic shifts in the location of convective regions in India. These changes have the potential to restore a portion of the precipitation losses induced by sulfate forcing over the last few decades.


2021 ◽  
Author(s):  
Kalle Nordling ◽  
Joonas Merikanto ◽  
Jouni Räisänen ◽  
Bjørn Samset ◽  
Hannele Korhonen

<p> </p><p><br>Modern climate models vary in their temperature responses to different climate forcers (such as CO2, methane, sulfate aerosols and black carbon). Here we study the reasons for model discrepancies  between different forcers by analyzing Precipitation Driver Response Model Intercomparison Project (PDRMIP) data. PDRMIP contains four different experiments in addition to the present-day base case: 1) fivefold sulfur concentrations, 2) tenfold black carbon concentrations, 3) twofold CO2 concentrations, and 4) threefold methane concentrations We use a set of modern climate models from PRDMIP dataset to decompose the temperature responses to various energy budget terms, the longwave and shortwave, cloudy and clear sky components, surface terms and horizontal energy transport. This study allows us to better understand the key processes responsible for climate model discrepancies in estimates of anthropogenic climate change impacts. Preliminary results show that magnitude of the temperature response of each forcer is similar, and mechanisms causing temperature changes are similar between different forcers. Somewhat surprisingly most of the model spread originates from changes in long wave radiations. Here we investigate global and regional responses and model spread for different climate forcers.</p>


Sign in / Sign up

Export Citation Format

Share Document