urban networks
Recently Published Documents


TOTAL DOCUMENTS

554
(FIVE YEARS 170)

H-INDEX

31
(FIVE YEARS 7)

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
Marc Igigabel ◽  
Yves Nédélec ◽  
Nathalie Bérenger ◽  
Nicolas Flouest ◽  
Alexis Bernard ◽  
...  

Storm Xynthia, which hit the French Atlantic coast on February 28th, 2010, flooded vast territories despite coastal defences. This disaster highlighted the need to further study the behaviour of the coastal flood protection systems at an adapted geographical scale by considering the kinematics of the events. This objective has been achieved through a combination of conceptual input on the definition of protection systems, significant breakthroughs in the knowledge of the mechanisms governing the flooding, and via the improvement of strategies and methods dedicated to flood analysis and representation. The developed methodology was successfully tested on four sites submerged during Xynthia (Loix, Les Boucholeurs, and Boyardville, located in Charente-Maritime, and Batz-sur-Mer, located in Loire-Atlantique). This work is intended to guide the diagnosis of sites prone to marine flooding from the first investigations until the delivery of study reports. Beyond the usual focus on hydraulic structures, it provides guidelines to better analyse the interactions with the natural environment (sea, soil, dune, wetlands, etc.) and with the built environment (roads and urban networks, ponds used for fish farming, buildings, etc.). This systemic approach, which is applied to a territory considered as a complex adaptive system, is fundamental to understanding the reaction of a territory during a marine submersion event and subsequently developing adaptation or transformation strategies.


2021 ◽  
Vol 133 ◽  
pp. 103457
Author(s):  
Omid Mousavizadeh ◽  
Mehdi Keyvan-Ekbatani ◽  
Tom M. Logan

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260201
Author(s):  
Seyed Arman Haghbayan ◽  
Nikolas Geroliminis ◽  
Meisam Akbarzadeh

Traffic congestion in large urban networks may take different shapes and propagates non-uniformly variations from day to day. Given the fact that congestion on a road segment is spatially correlated to adjacent roads and propagates spatiotemporally with finite speed, it is essential to describe the main pockets of congestion in a city with a small number of clusters. For example, the perimeter control with macroscopic fundamental diagrams is one of the effective traffic management tools. Perimeter control adjusts the inflow to pre-specified regions of a city through signal timing on the border of a region in order to optimize the traffic condition within the region. The precision of macroscopic fundamental diagrams depends on the homogeneity of traffic condition on road segments of the region. Hence, previous studies have defined the boundaries of the region under perimeter control subjected to the regional homogeneity. In this study, a cost-effective method is proposed for the mentioned problem that simultaneously considers homogeneity, contiguity and compactness of clusters and has a shorter computational time. Since it is necessary to control the cost and complexity of perimeter control in terms of the number of traffic signals, sparse parts of the network could be potential candidates for boundaries. Therefore, a community detection method (Infomap) is initially adopted and then those clusters are improved by refining the communities in relation to roads with the highest heterogeneity. The proposed method is applied to Shenzhen, China and San Francisco, USA and the outcomes are compared to previous studies. The results of comparison reveal that the proposed method is as effective as the best previous methods in detecting homogenous communities, but it outperforms them in contiguity. It is worth noting that this is the first method that guarantees the connectedness of clusters, which is a prerequisite of perimeter control.


2021 ◽  
Vol 10 (12) ◽  
pp. 796
Author(s):  
Shimei Wei ◽  
Jinghu Pan

In light of the long-term pressure and short-term impact of economic and technological globalization, regional and urban resilience has become an important issue in research. As a new organizational form of regional urban systems, the resilience of urban networks generated by flow space has emerged as a popular subject of research. By gathering 2017 data from the Baidu search index, the Tencent location service, and social statistics, this study constructs information, transportation, and economic networks among 344 cities in China to analyze the spatial patterns of urban networks and explore their structural characteristics from the perspectives of hierarchy and assortativity. Transmissibility and diversity were used to represent the resilience of the network structure in interruption scenarios (node failure and maximum load attack). The results show the following: The information, transportation, and economic networks of cities at the prefecture level and higher in China exhibit a dense pattern of spatial distribution in the east and a sparse pattern in the west; however, there are significant differences in terms of hierarchy and assortativity. The order of resilience of network transmissibility and diversity from strong to weak was information, economic, transportation. Transmissibility and diversity had nearly identical scores in response to the interruption of urban nodes. Moreover, a highly heterogeneous network was more likely to cause shocks to the network structure, owing to its cross-regional urban links in case of disturbance. We identified 12 dominant nodes and 93 vulnerable nodes that can help accurately determine the impetus behind network structure resilience. The capacity of regions for resistance and recovery can be improved by strengthening the construction of emergency systems and risk prevention mechanisms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nishant Kumar ◽  
Jimi Oke ◽  
Bat-hen Nahmias-Biran

AbstractWe build on recent work to develop a fully mechanistic, activity-based and highly spatio-temporally resolved epidemiological model which leverages person-trajectories obtained from an activity-based model calibrated for two full-scale prototype cities, consisting of representative synthetic populations and mobility networks for two contrasting auto-dependent city typologies. We simulate the propagation of the COVID-19 epidemic in both cities to analyze spreading patterns in urban networks across various activity types. Investigating the impact of the transit network, we find that its removal dampens disease propagation significantly, suggesting that transit restriction is more critical for mitigating post-peak disease spreading in transit dense cities. In the latter stages of disease spread, we find that the greatest share of infections occur at work locations. A statistical analysis of the resulting activity-based contact networks indicates that transit contacts are scale-free, work contacts are Weibull distributed, and shopping or leisure contacts are exponentially distributed. We validate our simulation results against existing case and mortality data across multiple cities in their respective typologies. Our framework demonstrates the potential for tracking epidemic propagation in urban networks, analyzing socio-demographic impacts and assessing activity- and mobility-specific implications of both non-pharmaceutical and pharmaceutical intervention strategies.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7716
Author(s):  
Krzysztof K. Cwalina ◽  
Piotr Rajchowski ◽  
Alicja Olejniczak ◽  
Olga Błaszkiewicz ◽  
Robert Burczyk

Following the continuous development of the information technology, the concept of dense urban networks has evolved as well. The powerful tools, like machine learning, break new ground in smart network and interface design. In this paper the concept of using deep learning for estimating the radio channel parameters of the LTE (Long Term Evolution) radio interface is presented. It was proved that the deep learning approach provides a significant gain (almost 40%) with 10.7% compared to the linear model with the lowest RMSE (Root Mean Squared Error) 17.01%. The solution can be adopted as a part of the data allocation algorithm implemented in the telemetry devices equipped with the 4G radio interface, or, after the adjustment, the NB-IoT (Narrowband Internet of Things), to maximize the reliability of the services in harsh indoor or urban environments. Presented results also prove the existence of the inverse proportional dependence between the number of hidden layers and the number of historical samples in terms of the obtained RMSE. The increase of the historical data memory allows using models with fewer hidden layers while maintaining a comparable RMSE value for each scenario, which reduces the total computational cost.


Sign in / Sign up

Export Citation Format

Share Document