scholarly journals Running Biomechanics Before Injury and 1 Year After Anterior Cruciate Ligament Reconstruction in Division I Collegiate Athletes

2021 ◽  
pp. 036354652110266
Author(s):  
Keith A. Knurr ◽  
Stephanie A. Kliethermes ◽  
Mikel R. Stiffler-Joachim ◽  
Daniel G. Cobian ◽  
Geoffrey S. Baer ◽  
...  

Background: Preinjury running biomechanics are an ideal comparator for quantifying recovery after anterior cruciate ligament (ACL) reconstruction (ACLR), allowing for assessments within the surgical and nonsurgical limbs. However, availability of preinjury running biomechanics is rare and has been reported in case studies only. Purpose/Hypothesis: The purpose of this study was to determine if running biomechanics return to preinjury levels within the first year after ACLR among collegiate athletes. We hypothesized that (1) surgical knee biomechanics would be significantly reduced shortly after ACLR and would not return to preinjury levels by 12 months and (2) nonsurgical limb mechanics would change significantly from preinjury. Study Design: Cohort study; Level of evidence, 2. Methods: Thirteen Division I collegiate athletes were identified between 2015 and 2020 (6 female; mean ± SD age, 20.7 ± 1.3 years old) who had whole body kinematics and ground-reaction forces recorded during treadmill running (3.7 ± 0.6 m/s) before sustaining an ACL injury. Running analyses were repeated at 4, 6, 8, and 12 months (4M, 6M, 8M, 12M) after ACLR. Linear mixed effects models were used to assess differences in running biomechanics between post-ACLR time points and preinjury within each limb, reported as Tukey-adjusted P values. Results: When compared with preinjury, the surgical limb displayed significant deficits at all postoperative assessments ( P values <.01; values reported as least squares mean difference [SE]): peak knee flexion angle (4M, 13.2° [1.4°]; 6M, 9.9° [1.4°]; 8M, 9.8° [1.4°]; 12M, 9.0° [1.5°]), peak knee extensor moment (N·m/kg; 4M, 1.32 [0.13]; 6M, 1.04 [0.13]; 8M, 1.04 [0.13]; 12M, 0.87 [0.15]; 38%-57% deficit), and rate of knee extensor moment (N·m/kg/s; 4M, 22.7 [2.4]; 6M, 17.9 [2.3]; 8M, 17.5 [2.4]; 12M, 16.1 [2.6]; 33%-46% deficit). No changes for these variables from preinjury ( P values >.88) were identified in the nonsurgical limb. Conclusion: After ACLR, surgical limb knee running biomechanics were not restored to the preinjury state by 12M, while nonsurgical limb mechanics remained unchanged as compared with preinjury. Collegiate athletes after ACLR demonstrate substantial deficits in running mechanics as compared with preinjury that persist beyond the typical return-to-sport time frame. The nonsurgical knee appears to be a valid reference for recovery of the surgical knee mechanics during running, owing to the lack of change within the nonsurgical limb.

2020 ◽  
Vol 55 (8) ◽  
pp. 811-825 ◽  
Author(s):  
Gerwyn Hughes ◽  
Perry Musco ◽  
Samuel Caine ◽  
Lauren Howe

Objectives To identify reported (1) common biomechanical asymmetries in the literature after anterior cruciate ligament (ACL) reconstruction in adolescents during landing and (2) timescales for asymmetry to persist postsurgery. Data Sources We identified sources by searching the CINAHL, PubMed, Scopus, and SPORTDiscus electronic databases using the following search terms: asymmetry OR symmetry AND landing AND biomechanics OR kinematics OR kinetics. Study Selection We screened the titles and abstracts of 85 articles using our inclusion criteria. A total of 13 articles were selected for further analysis. Data Extraction Three reviewers independently assessed the methodologic quality of each study. We extracted the effect sizes directly from studies or calculated them for biomechanical variables assessing asymmetry between limbs of participants with ACL reconstruction. We conducted meta-analyses on variables that were assessed in multiple studies for both double- and single-limb landings. Data Synthesis Asymmetry was more commonly identified in kinetic than kinematic variables. Anterior cruciate ligament reconstruction appeared to have a large effect on asymmetry between limbs for peak vertical ground reaction force, peak knee-extension moment, and loading rate during double-limb landings, as well as mean knee-extension moment and knee energy absorption during both double- and single-limb landings. Conclusions Our findings suggested that return-to-sport criteria after ACL reconstruction should incorporate analysis of the asymmetry in loading experienced by each limb rather than movement patterns alone.


2013 ◽  
Vol 60 (2) ◽  
pp. 13-21 ◽  
Author(s):  
Miroslav Milankov ◽  
Vaso Kecojevic ◽  
Predrag Rasovic ◽  
Nemanja Kovacevic ◽  
Nemanja Gvozdenovic ◽  
...  

Disruption of the knee extensor apparatus, after harvesting the central third of the patellar tendon for a bone-tendon-bone autograft, is a rare complication. We made 2215 reconstructions of the anterior cruciate ligament of the knee using bonepatellar tendon-bone technique, and 10 patients had fracture of the patella (0.45%), and fore patients had rupture of the patellar tendon(0.18%). The fracture of the patella in two patients was treated nonoperatively and 8 patients was treated with operative reduction and osteosynthesis. Reconstruction of the patellar ligament in four patients with a rupture of patellar tendon (0.18%) was performed by a technique previously published with BTB allograft taken from the local bone bank. The mean Lysholm score was 90 (85-100), and all of them have continued to engage in sporting activities. In all patients the Lachman test was with the firm stop compared to the other leg. Xray changes in the patella were found in 2 patients, who had multifragmentary fractures of the patella. Disruption of the knee extensor apparatus, after harvesting the central third of the patellar tendon for a bone-tendon-bone autograft, can be prevented by avoiding to take too much bone graft, by using the most precise tools for cutting, while rehabilitation must be carefully planned. The optimal treatment disruption of the knee extensor apparatus after the reconstruction of the anterior cruciate ligament is a operative reconstruction, which allows continuation of the rehabilitation program.


Author(s):  
Komeil Dashti Rostami ◽  
Abbey Thomas

The influence of fatigue on landing biomechanics in anterior cruciate ligament deficient (ACLD) patients is poorly understood. The purpose of this study was to examine the effect of fatigue on hip and knee joint biomechanics in deficient patients. Twelve ACLD males and 12 healthy control subjects participated in the study. The ACLD patients landed with increased peak knee flexion angle (F = 15.71, p < .01) and decreased peak knee flexion moment (F = 9.13, p < .01) after fatigue. Furthermore, ACLD patients experienced lower vertical ground reaction forces compared with controls regardless of fatigue state (F = 9.75, p < .01). It seems that ACLD patients use protective strategy in response to fatigue in order to prevent further injury in knee point.


Sign in / Sign up

Export Citation Format

Share Document