Joint stiffness identification of industrial serial robots using 3D digital image correlation techniques

Author(s):  
Jianping Lin ◽  
Yongji Li ◽  
Yong Xie ◽  
Jiahao Hu ◽  
Junying Min

Industrial robots have been widely used in manufacturing for advantages of flexibility and high efficiency, while there exists a critical problem of low stiffness. Measuring the stiffnesses of joints accurately have a positive effect on optimizing the stiffness through compensation or posture adjustment. This study proposed a new method for stiffness identification of serial industrial robots using 3D digital image correlation (3D-DIC) techniques, which exhibits high accuracies. External forces are applied to the robot end and its 6-dimensional displacements are recorded with a 3D-DIC system. The values of joint stiffness are evaluated from the data of robot configurations, displacements and forces. The proposed method is implemented on the KUKA KR600-2830 robot experimentally and the average absolute value of relative error is 5.8%, which demonstrates that the proposed method provides much improved accuracy compared to the traditional method.

2006 ◽  
Author(s):  
Thomas Becker ◽  
Karsten Splitthof ◽  
Thorsten Siebert ◽  
Peter Kletting

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 30520-30535 ◽  
Author(s):  
Dana Solav ◽  
Kevin M. Moerman ◽  
Aaron M. Jaeger ◽  
Katia Genovese ◽  
Hugh M. Herr

2021 ◽  
pp. 002199832110565
Author(s):  
Amos Ichenihi ◽  
Wei Li ◽  
Li Zhe

Thin-ply hybrid laminates of glass and carbon fibers have been widely adopted in engineering pseudo-ductility. In this study, a Finite Element model is proposed using Abaqus to predict pseudo-ductility in thin-ply laminates consisting of three materials. These materials comprise continuous carbon (CC) and continuous glass sandwiching partial discontinuous carbon (DC). The model adopts the Hashin criterion for damage initiation in the fibers and the mixed-mode Benzeggagh-Kenane criterion on cohesive surfaces for delamination initiation and propagation. Numerically predicted stress–strain results are verified with experimental results under tensile loading. Results show pseudo-ductility increases with the increase in DC layers, and pseudo-yield strength and strain increase with the increase in CC layers. 3D-Digital Image Correlation results indicate delamination growth on pseudo-ductile laminates, and the calculated Poisson’s ratios show pseudo-ductility occurs below 0.27. Moreover, Poisson’s ratio decreases with an increase in pseudo-ductility.


Sign in / Sign up

Export Citation Format

Share Document