Pure-tension non-linear sliding mode control for deployment of tethered satellite system

Author(s):  
Zhiqiang Ma ◽  
Guanghui Sun ◽  
Zhihao Cheng ◽  
Zhengkai Li

This paper presents a sliding mode controller for the deployment of two-body tethered satellite system. A sliding surface design for underactuated system is employed to reconcile pure-tension control scheme with non-linear coupled deployment dynamics. The proposed sliding surface is strictly non-linear. Hence, the control scheme does not require linearization operation of tethered satellite system and can guarantee that all the system states converge to zero with arbitrary small errors. To deal with input constraint of pure-tension control, an adaption is introduced into the controller design to remove the negative effect caused by input constraint in stability analyses and ensures the feasibility of the proposed controller even though command input overtakes the tolerance of tension actuator. To avoid the chattering phenomena, the trivial sign function is removed from the switching input and replaced by the disturbance observer. Numerical results demonstrate the effectiveness of the proposed controller for the deployment of the tethered satellite system.

Author(s):  
Chenguang Liu ◽  
Wei Wang ◽  
Yong Guo ◽  
Shumin Chen ◽  
Aijun Li ◽  
...  

The dual-body tethered satellite system, which consists of two spacecraft connected by a single tether, is one of the most promising configurations in numerous space missions. To ensure the stability of deployment, the radial basis function neural network-based adaptive terminal sliding mode controller is proposed for the dual-body tethered satellite system with the model uncertainty and external disturbance. The terminal sliding mode controller serves as the main control framework for its properties of the strong robustness and finite-time convergence. The radial basis function neural network is adopted to approximate the model uncertainty, in which the weight vector of the radial basis function neural networks and the unknown upper bound of the external disturbance are estimated by using two adaptive laws. Finally, the Lyapunov theory and numerical simulations are used to prove the validity of the proposed controller.


2000 ◽  
Vol 37 (2) ◽  
pp. 212-217 ◽  
Author(s):  
Victor M. Aguero ◽  
Brian E. Gilchrist ◽  
Scott D. Williams ◽  
William J. Burke ◽  
Linda Krause ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document