terminal sliding mode
Recently Published Documents


TOTAL DOCUMENTS

1858
(FIVE YEARS 811)

H-INDEX

62
(FIVE YEARS 16)

2022 ◽  
Vol 121 ◽  
pp. 105036
Author(s):  
Maria Badar ◽  
Iftikhar Ahmad ◽  
Aneeque Ahmed Mir ◽  
Shahzad Ahmed ◽  
Adeel Waqas

2022 ◽  
pp. 1-19
Author(s):  
S. Liu ◽  
B. Yan ◽  
R. Liu ◽  
P. Dai ◽  
J. Yan ◽  
...  

Abstract The cooperative guidance problem of multiple inferior missiles intercepting a hypersonic target with the specific impact angle constraint in the two-dimensional plane is addressed in this paper, taking into consideration variations in a missile’s speed. The guidance law is designed with two subsystems: the direction of line-of-sight (LOS) and the direction of normal to LOS. In the direction of LOS, by applying the algebraic graph theory and the consensus theory, the guidance command is designed to make the system convergent in a finite time to satisfy the goal of cooperative interception. In the direction of normal to LOS, the impact angle is constrained to transform into the LOS angle at the time of interception. In view of the difficulty of measuring unknown target acceleration information in real scenarios, the guidance command is designed by utilising a super-twisting algorithm based on a nonsingular fast-terminal sliding mode (NFTSM) surface. Numerical simulation results manifest that the proposed guidance law performs efficiently and the guidance commands are free of chattering. In addition, the overall performance of this guidance law is assessed with Monte Carlo runs in the presence of measurement errors. The simulation results demonstrate that the robustness can be guaranteed, and that overall efficiency and accuracy in intercepting the hypersonic target are achieved.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 124
Author(s):  
Long Xu ◽  
Wei Xiong ◽  
Minghao Zhou ◽  
Lei Chen

Dynamic traffic monitoring is a critical part of industrial communication network cybersecurity, which can be used to analyze traffic behavior and identify anomalies. In this paper, industrial networks are modeled by a dynamic fluid-flow model of TCP behavior. The model can be described as a class of systems with unmeasurable states. In the system, anomalies and normal variants are represented by the queuing dynamics of additional traffic flow (ATF) and can be considered as a disturbance. The novel contributions are described as follows: (1) a novel continuous terminal sliding-mode observer (TSMO) is proposed for such systems to estimate the disturbance for traffic monitoring; (2) in TSMO, a novel output injection strategy is proposed using the finite-time stability theory to speed up convergence of the internal dynamics; and (3) a full-order sliding-mode-based mechanism is developed to generate a smooth output injection signal for real-time estimations, which is directly used for anomaly detection. To verify the effectiveness of the proposed approach, the real traffic profiles from the Center for Applied Internet Data Analysis (CAIDA) DDoS attack datasets are used.


2022 ◽  
Author(s):  
Yong Guo ◽  
Fuqiang Di ◽  
Xiaodong Lin ◽  
Wenlin Wang ◽  
Changqing Wang

Abstract This paper researches two finite-time bounded control methods for Euler-Lagrange systems exposed to external disturbances. A novel full-order terminal sliding mode surface that is convenient for solving the input constraints is designed based on the characters of the hyperbolic tangent function. By using the designed full-order terminal sliding mode surface, the finite-time controller with input constraints can deal with external disturbances with the exactly known upper bound. Further, an adaptive finite-time bounded controller is designed to deal with the external disturbances with the upper bound that cannot be accurately known. Finally, the finite-time stability of the system is proved by using Lyapunov theory and numerical simulations.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Aydin Azizi ◽  
Hamed Mobki ◽  
Hassen M. Ouakad ◽  
Omid Reza B. Speily

This investigation attempts to study a possible controller in improving the dynamic stability of capacitive microstructures through mitigating the effects of disturbances and uncertainties in their resultant dynamic behavior. Consequently, a nonsingular terminal sliding mode control strategy is suggested in this regard. The main features of this particular control strategy are its high response speed and its non-reliance on powerful controller forces. The stability of the controller was investigated using Lyapunov theory. For this purpose, a suitable Lyapunov function was introduced to prove the stability of a controller, and the singularity conditions and methods to overcome these conditions are presented. The achieved results proved the high capability of the applied technique in stabilizing of the microstructure as well as mitigating the effects of disturbances and uncertainties.


2022 ◽  
Author(s):  
Balaji Jayaraman ◽  
Kumar Gaurav ◽  
Dipak K. Giri ◽  
Ajoy K. Ghosh

2022 ◽  
Vol 355 ◽  
pp. 03062
Author(s):  
Haiping Lin ◽  
Hanlie Gu ◽  
Jinyu Ma ◽  
Shengdong Yu

A novel type of nonlinear robust control strategy is proposed in view of uncertain nonlinear factors, such as hysteresis, creep, and high-frequency vibration, of piezoelectric actuators (PEAs). This strategy can be used for the precise trajectory tracking of PEAs. The Bouc–Wen dynamic model is reasonably simplified to facilitate engineering application. The hysteresis term is summarized as an unknown term to avoid its nonlinear parameter identification. The controller robustness is achieved due to the nonsingular terminal sliding mode control, and the online estimation of unknown disturbances is realized because of the delay estimation technology; thus, no prior knowledge of the unknown boundary of the system is required. The precision robust differentiator is used to estimate the speed and acceleration signals in real time on the basis of the obtained displacement signals. The closed-loop stability of the system is proved by the Lyapunov criterion. Experimental results show that the proposed control strategy performs better than the traditional time-delay estimation control in terms of control accuracy and energy conservation. Therefore, the proposed control strategy can play an important role in the micro/nanofield driven by PEAs.


Author(s):  
Anil Kumar Pal ◽  
Shyam Kamal ◽  
Xinghuo Yu ◽  
Shyam Krishna Nagar ◽  
Bijnan Bandyopadhyay

Sign in / Sign up

Export Citation Format

Share Document