Algorithms of reduced complexity to design control sequences for untimed Petri nets in varying and uncertain environments

Author(s):  
Dimitri Lefebvre

Petri nets have been widely used for the modelling, analysis, control and optimization of discrete event systems with shared resources in the domains of engineering. This article concerns the design of control sequences for such systems modelled with untimed Petri nets. The aim of the controller is to incrementally compute sequences of transition firings with minimal size. Such sequences aim to move the marking from an initial value to a reference value. The resulting trajectory must avoid some forbidden markings and limit as possible the exploration of non-promising branches. For this purpose, the approach explores a small part of the reachability graph in the neighbourhood of the current marking. Then from the explored markings, it estimates a distance to the reference. The main contributions are (a) to reduce the explored part of the reachability graph according to a double limitation in breadth and in depth in order to provide solutions with a low computational effort; (b) to provide conditions to ensure the converge and optimality of the proposed algorithms and derive necessary and sufficient conditions for reachability; and (c) to include the firing sequence design in a global control schema suitable for reactive scheduling problems in uncertain and perturbed environments. The main application concerns deadlock-free scheduling problems in the domain of flexible manufacturing systems, but the approach is also applicable for systems in computer science and transportation.

2017 ◽  
Vol 34 (6) ◽  
pp. 1896-1922
Author(s):  
YiFan Hou ◽  
Murat Uzam ◽  
Mi Zhao ◽  
ZhiWu Li

Purpose Deadlock is a rather undesirable phenomenon and must be well solved in flexible manufacturing systems (FMS). This paper aims to propose a general iterative deadlock control method for a class of generalized Petri nets (GPN), namely, G-systems, which can model an FMS with assembly and disassembly operations of multiple resource acquisition. When given an uncontrolled G-system prone to deadlocks, the work focuses on the synthesis of a near-optimal, non-blocking supervisor based on reachability graph (RG) analysis. Design/methodology/approach The concept of a global idle place (GIP) for an original uncontrolled G-system is presented. To simplify the RG computation of an uncontrolled G-system, a GIP is added temporarily to the net model during monitor computation steps. Starting with one token and then by gradually increasing the number of tokens in the GIP at each iteration step, the related net system is obtained. The minimal-covered-set of all bad markings of the related net system suffering from deadlock can be identified and then removed by additional monitors through an established place-invariant control method. Consequently, all related systems are live, and the GIP is finally removed when the non-blockingness of the controlled system is achieved. Meanwhile, the redundancy of monitors is also checked. Findings A typical G-system example is provided to demonstrate the applicability and effectiveness of the proposed method. Experiments show that the proposed method is easy to use and provides very high behavioral permissiveness for G-system. Generally, it can achieve an optimal or a near-optimal solution of the non-blocking supervisor. Originality/value In this work, the concept of GIP for G-systems is presented for synthesis non-blocking supervisors based on RG analysis. By using GIP, an effective deadlock control method is proposed. Generally, the proposed method can achieve an optimal or a near-optimal, non-blocking supervisor for an uncontrolled G-system prone to deadlocks.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ter-Chan Row ◽  
Wei-Ming Syu ◽  
Yen-Liang Pan ◽  
Ching-Cheng Wang

This paper focuses on solving deadlock problems of flexible manufacturing systems (FMS) based on Petri nets theory. Precisely, one novel control transition technology is developed to solve FMS deadlock problem. This new proposed technology can not only identify the maximal saturated tokens of idle places in Petri net model (PNM) but also further reserve all original reachable markings whatever they are legal or illegal ones. In other words, once the saturated number of tokens in idle places is identified, the maximal markings of system reachability graph can then be checked. Two classical S3PR (the Systems of Simple Sequential Processes with Resources) examples are used to illustrate the proposed technology. Experimental results indicate that the proposed algorithm of control transition technology seems to be the best one among all existing algorithms.


Sign in / Sign up

Export Citation Format

Share Document