transition control
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 68)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Miriam Deschine ◽  
Luke Szathmary ◽  
Vladimir V. Golubev ◽  
William MacKunis ◽  
Reda R. Mankbadi ◽  
...  

Author(s):  
Ling Li ◽  
Fazhan Tao ◽  
Zhumu Fu

Purpose The flexible mode transitions, multiple power sources and system uncertainty lead to challenges for mode transition control of four-wheel-drive hybrid powertrain. Therefore, the purpose of this paper is to improve dynamic performance and fuel economy in mode transition process for four-wheel-drive hybrid electric vehicles (HEVs), overcoming the influence of system uncertainty. Design/methodology/approach First, operation modes and transitions are analyzed and then dynamic models during mode transition process are established. Second, a robust mode transition controller based on radial basis function neural network (RBFNN) is proposed. RBFNN is designed as an uncertainty estimator to approximate lumped model uncertainty due to modeling error. Based on this estimator, a sliding mode controller (SMC) is proposed in clutch slipping phase to achieve clutch speed synchronization, despite disturbance of engine torque error, engine resistant torque and clutch torque. Finally, simulations are carried out on MATLAB/Cruise co-platform. Findings Compared with routine control and SMC, the proposed robust controller can achieve better performance in clutch slipping time, engine torque error, vehicle jerk and slipping work either in nominal system or perturbed system. Originality/value The mode transition control of four-wheel-drive HEVs is investigated, and a robust controller based on RBFNN estimation is proposed. Compared results show that the proposed controller can improve dynamic performance and fuel economy effectively in spite of the existence of uncertainty.


2021 ◽  
pp. 107754632110371
Author(s):  
Deyuan Liu ◽  
Hao Liu ◽  
Xin Li

In this article, the formation control problem is investigated for a team of unmanned tail-sitters subject to communication delays. A robust distributed and continuous formation control scheme is developed to achieve the desired aggressive time-varying formation flying in flight mode transitions between forward and vertical flights. The proposed control method consists of a translational controller and a rotational controller for each individual tail-sitter to govern the position and attitude motions, respectively. It is proven that the formation system stability can be guaranteed in the presence of communication delays and multiple uncertainties. Simulation results are presented for a team of tail-sitters to illustrate the advantages of the proposed formation flight control algorithm.


Sign in / Sign up

Export Citation Format

Share Document