Event-triggered particle filtering and Cramér–Rao lower bound computation

Author(s):  
Nargess Sadeghzadeh-Nokhodberiz ◽  
Mohammadreza Davoodi ◽  
Nader Meskin

In this article, an event-triggered particle filtering method is presented to estimate the states of stochastic nonlinear systems with the ultimate goal to reduce the information exchange in networked systems. In the event-triggered estimation, measurements are transferred to an estimator only if certain event conditions are satisfied. Using these event-triggered measurements leads to non-Gaussianity of the conditional posterior distribution in minimum mean square error estimators even in the presence of Gaussian process and measurement noises. Therefore, in this article, a particle filter–based method is employed to solve the non-Gaussianity issue in nonlinear systems due to event-triggered measurements. In the proposed scheme, when no information is sent to the estimator, particles weight update role is modified according to the event-triggering probability density function. To evaluate the performance of the proposed state estimation scheme, the conditional posterior Cramér–Rao lower bound is obtained using Monte Carlo simulations. The bound is also computed for nonlinear Gaussian systems with a Gaussian event-triggering mechanism as a special case. Finally, the efficiency of the proposed method is demonstrated for a networked interconnected four-tank system through simulation and a comparison study is also provided.

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1603
Author(s):  
Yun Ho Choi ◽  
Sung Jin Yoo

A quantized-feedback-based adaptive event-triggered tracking problem is investigated for strict-feedback nonlinear systems with unknown nonlinearities and external disturbances. All state variables are quantized through a uniform quantizer and the quantized states are only measurable for the control design. An approximation-based adaptive event-triggered control strategy using quantized states is presented. Compared with the existing recursive quantized feedback control results, the primary contributions of the proposed strategy are (1) to derive a quantized-states-based function approximation mechanism for compensating for unknown and unmatched nonlinearities and (2) to design a quantized-states-based event triggering law for the intermittent update of the control signal. A Lyapunov-based stability analysis is provided to conclude that closed-loop signals are uniformly ultimately bounded and there exists a minimum inter-event time for excluding Zeno behavior. In simulation results, it is shown that the proposed quantized-feedback-based event-triggered control law can be implemented with less than 10% of the total sample data of the existing quantized-feedback continuous control law.


Sign in / Sign up

Export Citation Format

Share Document