The Pattern of Urban Land-use Changes: A Case Study of the Indian Cities

2014 ◽  
Vol 5 (1) ◽  
pp. 83-104 ◽  
Author(s):  
R. Gupta
2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Andrea Montero ◽  
Joan Marull ◽  
Enric Tello ◽  
Claudio Cattaneo ◽  
Francesc Coll ◽  
...  

2014 ◽  
Vol 124 ◽  
pp. 118-128 ◽  
Author(s):  
Jinfeng Du ◽  
Jean-Claude Thill ◽  
Richard B. Peiser ◽  
Changchun Feng

Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 42 ◽  
Author(s):  
Wei Sun ◽  
Zhihong Liu ◽  
Yang Zhang ◽  
Weixin Xu ◽  
Xiaotong Lv ◽  
...  

The expansion of urban areas and the increase in the number of buildings and urbanization characteristics, such as roads, affect the meteorological environment in urban areas, resulting in weakened pollutant dispersion. First, this paper uses GIS (geographic information system) spatial analysis technology and landscape ecology analysis methods to analyze the dynamic changes in land cover and landscape patterns in Chengdu as a result of urban development. Second, the most appropriate WRF (Weather Research and Forecasting) model parameterization scheme is selected and screened. Land-use data from different development stages in the city are included in the model, and the wind speed and temperature results simulated using new and old land-use data (1980 and 2015) are evaluated and compared. Finally, the results of the numerical simulations by the WRF-Chem air quality model using new and old land-use data are coupled with 0.25° × 0.25°-resolution MEIC (Multi-resolution Emission Inventory for China) emission source data from Tsinghua University. The results of the sensitivity experiments using the WRF-Chem model for the city under different development conditions and during different periods are discussed. The meteorological conditions and pollution sources remained unchanged as the land-use data changed, which revealed the impact of urban land-use changes on the simulation results of PM2.5 atmospheric pollutants. The results show the following. (1) From 1980 to 2015, the land-use changes in Chengdu were obvious, and cultivated land exhibited the greatest changes, followed by forestland. Under the influence of urban land-use dynamics and human activities, both the richness and evenness of the landscape in Chengdu increased. (2) The microphysical scheme WSM3 (WRF Single–Moment 3 class) and land-surface scheme SLAB (5-layer diffusion scheme) were the most suitable for simulating temperatures and wind speeds in the WRF model. The wind speed and temperature simulation results using the 2015 land-use data were better than those using the 1980 land-use data when assessed according to the coincidence index and correlation coefficient. (3) The WRF-Chem simulation results obtained for PM2.5 using the 2015 land-use data were better than those obtained using the 1980 land-use data in terms of the correlation coefficient and standard deviation. The concentration of PM2.5 in urban areas was higher than that in the suburbs, and the concentration of PM2.5 was lower on Longquan Mountain in Chengdu than in the surrounding areas.


2020 ◽  
Vol 12 (3) ◽  
pp. 370
Author(s):  
Shuqi He ◽  
Xingpeng Chen ◽  
Zilong Zhang ◽  
Zhaoyue Wang ◽  
Mengran Hu

As an open artificial ecosystem, the development of a city requires the continuous input and output of material and energy, which is called urban metabolism, and includes catabolic (material-flow) and anabolic (material-accumulation) processes. Previous studies have focused on the catabolic and ignored the anabolic process due to data and technology problems. The combination of remote-sensing technology and high-resolution satellite images facilitates the estimation of cumulative material amounts in urban systems. This study focused on persistent accumulation, which is the metabolic response of urban land use/urban land expansion, building stock, and road stock to land-use changes. Building stock is an extremely cost-intensive and long-lived component of cumulative metabolism. The study measured building stocks of Jinchang, China’s nickel capital by using remote-sensing images and field-research data. The development of the built environment could be analyzed by comparing the stock of buildings on maps representing different time periods. The results indicated that material anabolism in Jinchang is a distance-dependent function, where the amounts and rates of material anabolism decrease with changes in distance to the central business district (CBD) and city administration center (CAC). The cumulative metabolic rate and cumulative total metabolism were observed to be increasing, however, the growth rate has decreased.


Sign in / Sign up

Export Citation Format

Share Document