Dietary soy isoflavones increased hepatic protein disulfide isomerase content and suppressed its enzymatic activity in rats

2014 ◽  
Vol 239 (6) ◽  
pp. 707-714 ◽  
Author(s):  
Chao Wu Xiao ◽  
Kevin Donak ◽  
Olivia Ly ◽  
Carla Wood ◽  
Gerard Cooke ◽  
...  
2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Patrick Cherubin ◽  
Jessica Guyette ◽  
Michael Taylor ◽  
Morgan O’Donnell ◽  
Laura Herndon ◽  
...  

Cholera toxin (CT) is composed of a disulfide-linked A1/A2 heterodimer and a ring-like, cell-binding B homopentamer. The catalytic A1 subunit must dissociate from CTA2/CTB5 to manifest its cellular activity. Reduction of the A1/A2 disulfide bond is required for holotoxin disassembly, but reduced CTA1 does not spontaneously separate from CTA2/CTB5: protein disulfide isomerase (PDI) is responsible for displacing CTA1 from its non-covalent assembly in the CT holotoxin. Contact with PDI shifts CTA1 from a protease-resistant conformation to a protease-sensitive conformation, which is thought to represent the PDI-mediated unfolding of CTA1. Based solely on this finding, PDI is widely viewed as an ‘unfoldase’ that triggers toxin disassembly by unfolding the holotoxin-associated A1 subunit. In contrast with this unfoldase model of PDI function, we report the ability of PDI to render CTA1 protease-sensitive is unrelated to its role in toxin disassembly. Multiple conditions that promoted PDI-induced protease sensitivity in CTA1 did not support PDI-mediated disassembly of the CT holotoxin. Moreover, preventing the PDI-induced shift in CTA1 protease sensitivity did not affect PDI-mediated disassembly of the CT holotoxin. Denatured PDI could still convert CTA1 into a protease-sensitive state, and equal or excess molar fractions of PDI were required for both efficient conversion of CTA1 into a protease-sensitive state and efficient disassembly of the CT holotoxin. These observations indicate the ‘unfoldase’ property of PDI does not play a functional role in CT disassembly and does not represent an enzymatic activity.


2010 ◽  
Vol 429 (1) ◽  
pp. 157-169 ◽  
Author(s):  
Xin-Miao Fu ◽  
Bao Ting Zhu

Members of the PDI (protein disulfide-isomerase) family are critical for the correct folding of secretory proteins by catalysing disulfide bond formation as well as by serving as molecular chaperones to prevent protein aggregation. In the present paper, we report that the chaperone activity of the human pancreas-specific PDI homologue (PDIp) is independent of its enzymatic activity on the basis of the following lines of evidence. First, alkylation of PDIp by iodoacetamide fully abolishes its enzymatic activity, whereas it still retains most of its chaperone activity in preventing the aggregation of reduced insulin B chain and denatured GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Secondly, mutation of the cysteine residues in PDIp's active sites completely abolishes its enzymatic activity, but does not affect its chaperone activity. Thirdly, the b-b′ fragment of PDIp, which does not contain the active sites and is devoid of enzymatic activity, still has chaperone activity. Mechanistically, we found that both the recombinant PDIp expressed in Escherichia coli and the natural PDIp present in human or monkey pancreas can form stable complexes with thermal-denatured substrate proteins independently of their enzymatic activity. The high-molecular-mass soluble complexes between PDIp and GAPDH are formed in a stoichiometric manner (subunit ratio of 1:3.5–4.5), and can dissociate after storage for a certain time. As a proof-of-concept for the biological significance of PDIp in intact cells, we demonstrated that its selective expression in E. coli confers strong protection of these cells against heat shock and oxidative-stress-induced death independently of its enzymatic activity.


Sign in / Sign up

Export Citation Format

Share Document