substrate proteins
Recently Published Documents


TOTAL DOCUMENTS

331
(FIVE YEARS 86)

H-INDEX

57
(FIVE YEARS 5)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Satoshi Yamanaka ◽  
Yuto Horiuchi ◽  
Saya Matsuoka ◽  
Kohki Kido ◽  
Kohei Nishino ◽  
...  

AbstractProteolysis-targeting chimaeras (PROTACs) as well as molecular glues such as immunomodulatory drugs (IMiDs) and indisulam are drugs that induce interactions between substrate proteins and an E3 ubiquitin ligases for targeted protein degradation. Here, we develop a workflow based on proximity-dependent biotinylation by AirID to identify drug-induced neo-substrates of the E3 ligase cereblon (CRBN). Using AirID-CRBN, we detect IMiD-dependent biotinylation of CRBN neo-substrates in vitro and identify biotinylated peptides of well-known neo-substrates by mass spectrometry with high specificity and selectivity. Additional analyses reveal ZMYM2 and ZMYM2-FGFR1 fusion protein—responsible for the 8p11 syndrome involved in acute myeloid leukaemia—as CRBN neo-substrates. Furthermore, AirID-DCAF15 and AirID-CRBN biotinylate neo-substrates targeted by indisulam and PROTACs, respectively, suggesting that this approach has the potential to serve as a general strategy for characterizing drug-inducible protein–protein interactions in cells.


2021 ◽  
Vol 23 (1) ◽  
pp. 465
Author(s):  
Imran T. Malik ◽  
Julian D. Hegemann ◽  
Heike Brötz-Oesterhelt

The Clp protease system fulfills a plethora of important functions in bacteria. It consists of a tetradecameric ClpP barrel holding the proteolytic centers and two hexameric Clp-ATPase rings, which recognize, unfold, and then feed substrate proteins into the ClpP barrel for proteolytic degradation. Flexible loops carrying conserved tripeptide motifs protrude from the Clp-ATPases and bind into hydrophobic pockets (H-pockets) on ClpP. Here, we set out to engineer microcin J25 (MccJ25), a ribosomally synthesized and post-translationally modified peptide (RiPP) of the lasso peptide subfamily, by introducing the conserved tripeptide motifs into the lasso peptide loop region to mimic the Clp-ATPase loops. We studied the capacity of the resulting lasso peptide variants to bind to ClpP and affect its activity. From the nine variants generated, one in particular (12IGF) was able to activate ClpP from Staphylococcus aureus and Bacillus subtilis. While 12IGF conferred stability to ClpP tetradecamers and stimulated peptide degradation, it did not trigger unregulated protein degradation, in contrast to the H-pocket-binding acyldepsipeptide antibiotics (ADEPs). Interestingly, synergistic interactions between 12IGF and ADEP were observed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sijing Long ◽  
Li Yang ◽  
Wei Dang ◽  
Shuyu Xin ◽  
Mingjuan Jiang ◽  
...  

Deubiquitylating enzymes (DUBs) are proteases that crack the ubiquitin code from ubiquitylated substrates to reverse the fate of substrate proteins. Recently, DUBs have been found to mediate various cellular biological functions, including antiviral innate immune response mediated by pattern-recognition receptors (PRRs) and NLR Family pyrin domain containing 3 (NLRP3) inflammasomes. So far, many DUBs have been identified to exert a distinct function in fine-tuning antiviral innate immunity and are utilized by viruses for immune evasion. Here, the recent advances in the regulation of antiviral responses by DUBs are reviewed. We also discussed the DUBs-mediated interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and antiviral innate immunity. The understanding of the mechanisms on antiviral innate immunity regulated by DUBs may provide therapeutic opportunities for viral infection.


2021 ◽  
Author(s):  
Pralhad Namdev Joshi ◽  
Evgeniy Mervinetsky ◽  
Ohad Solomon ◽  
Yu-Ju Chen ◽  
Shlomo Yitzchaik ◽  
...  

Kinases are important cancer biomarkers and are conventionally detected based on their catalytic activity. Kinases regulate cellular activities by phosphorylation of motif-specific multiple substrate proteins, resulting in a lack of selectivity of activity-based kinase biosensors. We present an alternative approach of sensing kinases based on the interactions of their allosteric docking sites with a specific partner protein. The new approach was demonstrated for the ERK2 kinase and its substrate ELK-1. A peptide derived from ELK-1 was bound to a gold electrode and ERK2 sensing was performed by electrochemical impedance spectroscopy. The sensors showed a high level of target selectivity for ERK2 when compared with p38gamma kinase and BSA. ERK2 was detected in its cellular concentration range, 0.2-8.0 microM. Using the flexibility of peptide design, our method is generic for developing sensitive and substrate-specific biosensors and other disease-related enzymes based on their interactions.


Author(s):  
James A. Brannigan ◽  
Anthony J. Wilkinson

AbstractThe leishmaniases are infectious diseases caused by a number of species of obligate intracellular protozoa of the genus Leishmania with disease manifesting as cutaneous, mucocutaneous and visceral forms. Despite being endemic in more than 80 countries and its being the cause of high morbidity and mortality, leishmaniasis remains a neglected tropical disease. Chemotherapy is the frontline treatment, but drugs in current use suffer from toxic side effects, difficulties in administration and extended treatment times — moreover, resistance is emerging. New anti-leishmanial drugs are a recognised international priority. Here, we review investigations into N-myristoyltransferase (NMT) as a potential drug target. NMT catalyses the co-translational transfer of a C14 fatty acid from myristoyl-CoA onto the N-terminal glycine residue of a significant subset of proteins in eukaryotic cells. This covalent modification influences the stability and interactions of substrate proteins with lipids and partner proteins. Structure-guided development of new lead compounds emerging from high-throughput screening campaigns targeting Leishmania donovani NMT has led to the discovery of potent inhibitors which have been used to gain insights into the role of protein myristoylation in these parasites and to validate NMT as a drug target.


Author(s):  
Megan M. Nelson ◽  
J. Damon Hoff ◽  
Mya L. Zeese ◽  
Gabriel Corfas

Poly (ADP-ribose) polymerase 1 (PARP1) is a ubiquitously expressed enzyme that regulates DNA damage repair, cell death, inflammation, and transcription. PARP1 functions by adding ADP-ribose polymers (PAR) to proteins including itself, using NAD+ as a donor. This post-translational modification known as PARylation results in changes in the activity of PARP1 and its substrate proteins and has been linked to the pathogenesis of various neurological diseases. PARP1 KO mice display schizophrenia-like behaviors, have impaired memory formation, and have defects in neuronal proliferation and survival, while mutations in genes that affect PARylation have been associated with intellectual disability, psychosis, neurodegeneration, and stroke in humans. Yet, the roles of PARP1 in brain development have not been extensively studied. We now find that loss of PARP1 leads to defects in brain development and increased neuronal density at birth. We further demonstrate that PARP1 loss increases the expression levels of genes associated with neuronal migration and adhesion in the E15.5 cerebral cortex, including Reln. This correlates with an increased number of Cajal–Retzius (CR) cells in vivo and in cultures of embryonic neural progenitor cells (NPCs) derived from the PARP1 KO cortex. Furthermore, PARP1 loss leads to increased NPC adhesion to N-cadherin, like that induced by experimental exposure to Reelin. Taken together, these results uncover a novel role for PARP1 in brain development, i.e., regulation of CR cells, neuronal density, and cell adhesion.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vincenza Simona Delvecchio ◽  
Claudia Fierro ◽  
Sara Giovannini ◽  
Gerry Melino ◽  
Francesca Bernassola

AbstractUbiquitination-mediated proteolysis or regulation of proteins, ultimately executed by E3 ubiquitin ligases, control a wide array of cellular processes, including transcription, cell cycle, autophagy and apoptotic cell death. HECT-type E3 ubiquitin ligases can be distinguished from other subfamilies of E3 ubiquitin ligases because they have a C-terminal HECT domain that directly catalyzes the covalent attachment of ubiquitin to their substrate proteins. Deregulation of HECT-type E3-mediated ubiquitination plays a prominent role in cancer development and chemoresistance. Several members of this subfamily are indeed frequently deregulated in human cancers as a result of genetic mutations and altered expression or activity. HECT-type E3s contribute to tumorigenesis by regulating the ubiquitination rate of substrates that function as either tumour suppressors or oncogenes. While the pathological roles of the HECT family members in solid tumors are quite well established, their contribution to the pathogenesis of hematological malignancies has only recently emerged. This review aims to provide a comprehensive overview of the involvement of the HECT-type E3s in leukemogenesis.


2021 ◽  
Vol 478 (18) ◽  
pp. 3467-3483
Author(s):  
Samuel R. Witus ◽  
Mikaela D. Stewart ◽  
Rachel E. Klevit

Mutations in breast cancer type 1 susceptibility protein (BRCA1) and its heterodimeric binding partner BARD1 confer a high risk for the development of breast and ovarian cancers. The sole enzymatic function of the BRCA1/BARD1 complex is as a RING-type E3 ubiquitin (Ub) ligase, leading to the deposition of Ub signals onto a variety of substrate proteins. Distinct types of Ub signals deposited by BRCA1/BARD1 (i.e. degradative vs. non-degradative; mono-Ub vs. poly-Ub chains) on substrate proteins mediate aspects of its function in DNA double-stranded break repair, cell-cycle regulation, and transcriptional regulation. While cancer-predisposing mutations in both subunits lead to the inactivation of BRCA1/BARD1 ligase activity, controversy remains as to whether its Ub ligase activity directly inhibits tumorigenesis. Investigation of BRCA1/BARD1 substrates using rigorous, well-validated mutants and experimental systems will ultimately clarify the role of its ligase activity in cancer and possibly establish prognostic and diagnostic metrics for patients with mutations. In this review, we discuss the Ub ligase function of BRCA1/BARD1, highlighting experimental approaches, mechanistic considerations, and reagents that are useful in the study of substrate ubiquitylation. We also discuss the current understanding of two well-established BRCA1/BARD1 substrates (nucleosomal H2A and estrogen receptor α) and several recently discovered substrates (p50, NF2, Oct1, and LARP7). Lessons from the current body of work should provide a road map to researchers examining novel substrates and biological functions attributed to BRCA1/BARD1 Ub ligase activity.


2021 ◽  
Vol 22 (19) ◽  
pp. 10618
Author(s):  
Congcong Du ◽  
Xu Chen ◽  
Qi Su ◽  
Wenbin Lu ◽  
Qiqi Wang ◽  
...  

Cardiovascular disease (CVD) is a common disease caused by many factors, including atherosclerosis, congenital heart disease, heart failure, and ischemic cardiomyopathy. CVD has been regarded as one of the most common diseases and has a severe impact on the life quality of patients. The main features of CVD include high morbidity and mortality, which seriously threaten human health. SUMO proteins covalently conjugate lysine residues with a large number of substrate proteins, and SUMOylation regulates the function of target proteins and participates in cellular activities. Under certain pathological conditions, SUMOylation of proteins related to cardiovascular development and function are greatly changed. Numerous studies have suggested that SUMOylation of substrates plays critical roles in normal cardiovascular development and function. We reviewed the research progress of SUMOylation in cardiovascular development and function, and the regulation of protein SUMOylation may be applied as a potential therapeutic strategy for CVD treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Young Hong ◽  
Hening Lin

Sirtuins use NAD+ to remove various acyl groups from protein lysine residues. Through working on different substrate proteins, they display many biological functions, including regulation of cell proliferation, genome stability, metabolism, and cell migration. There are seven sirtuins in humans, SIRT1-7, each with unique enzymatic activities, regulatory mechanisms, subcellular localizations, and substrate scopes. They have been indicated in many human diseases, including cancer, neurodegeneration, microbial infection, metabolic and autoimmune diseases. Consequently, interests in development of sirtuin modulators have increased in the past decade. In this brief review, we specifically summarize genetic and pharmacological modulations of sirtuins in cancer, neurological, and cardiovascular diseases. We further anticipate this review will be helpful for scrutinizing the significance of sirtuins in the studied diseases.


Sign in / Sign up

Export Citation Format

Share Document