An energy-efficient multi-objective permutation flow shop scheduling problem using an improved hybrid cuckoo search algorithm

2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110236
Author(s):  
Wenbin Gu ◽  
Zhuo Li ◽  
Min Dai ◽  
Minghai Yuan

The flow shop scheduling problem has been widely studied in recent years, but the research on multi-objective flow shop scheduling with green indicators is still relatively limited. It is urgent to strengthen the research on effective methods to solve such interesting problems. To consider the economic and environmental factors simultaneously, the paper investigates the multi-objective permutation flow shop scheduling problems (MOPFSP) which minimizes the makespan and total carbon emissions. Since MOPFSP is proved to be a NP-hard problem for more than two machines. A hybrid cuckoo search algorithm (HCSA) is proposed to solve the problems. Firstly, a largest-order-value method is proposed to enhance the performance of HCS algorithm in the solution space of MOPFSP. Then, an adaptive factor of step size is designed to control the search scopes in the evolution phases. Finally, a multi-neighborhood local search rule is addressed in order to find the optimal sub-regions obtained by the HCSA. Numerical experiments show that HCSA can solve MOPFSP efficiently.

Author(s):  
Driss Belbachir ◽  
Fatima Boumediene ◽  
Ahmed Hassam ◽  
Ltéfa Ghomri

Scheduling concerns the allocation of limited resources overtime to perform tasks to fulfill certain criterion and optimize one or several objective functions. One of the most popular models in scheduling theory is that of the flow-shop scheduling. During the last 40 years, the permutation flow-shop sequencing problem with the objective of makespan minimization has held the attraction of many researchers. This problem characterized as Fm/prmu/Cmax in the notation of Graham, involves the determination of the order of processing of n jobs on m machines. In addition, there was evidence that m-machine permutation flow-shop scheduling problem (PFSP) is strongly NP-hard for m ≥3. Due to this NP-hardness, many heuristic approaches have been proposed, this work falls within the framework of the scientific research, whose purpose is to study Cuckoo search algorithm. Also, the objective of this study is to adapt the cuckoo algorithm to a generalized permutation flow-shop problem for minimizing the total completion time, so the problem is denoted as follow: Fm | | Cmax. Simulation results are judged by the total completion time and algorithm run time for each instance processed.


Sign in / Sign up

Export Citation Format

Share Document