Three-dimensional geometry, pore parameter, and fractal characteristic analyses of medium-density fiberboard by X-ray tomography, coupling with scanning electron microscopy and mercury intrusion porosimetry

2020 ◽  
pp. 174425912092669
Author(s):  
Huiqi Shao ◽  
Zhongbao Guo ◽  
Wenhui Li ◽  
Lei Fang ◽  
Menghao Qin ◽  
...  

Pore structure parameters are significant for investigating the diffusion properties of volatile organic compounds from building materials. Traditional characterization methods could provide ether surface morphology or some pore parameters of the material, which could not comprehensively reflect the overall information. X-ray tomography, as an advanced nondestructive method, can not only characterize the three-dimensional structure characteristics but also comprehensively measure pore parameters of materials. This study applied X-ray tomography to systematically analyze the geometry and volatile organic compound emission paths of medium-density fiberboard. The three-dimensional structures of pores and materials were reconstructed respectively. The isolated pores and connective pores were extracted to indicate the pore connectivity, and skeletonization was simultaneously applied, allowing visualization of the volatile organic compound diffusion paths. The porosity was 54.67%, and 99.91% of the pores were connective pores. The tortuosity was 2.07, and the fractal dimension was 2.605, indicating the heterogeneity and self-similarity of pore structures. Scanning electron microscopy was used to characterize the two-dimensional morphology of the material, and mercury intrusion porosimetry was applied to analyze the pore parameters. The results were consistent with that of X-ray tomography, and their coupling with X-ray tomography could comprehensively characterize the structures and parameters of indoor building materials, which could contribute significantly to future research on volatile organic compound emission mechanisms and building physics.

2019 ◽  
Vol 14 ◽  
pp. 155892501984322
Author(s):  
Xuzheng Yuan ◽  
Xuechuan Wang ◽  
Guohui Zhao ◽  
Sujie Jiang

Recent studies have been conducted on the characteristics of volatile organic compound emissions; most of them are focused on wood-based building materials, scarcely mentioned about leather or leather imitates. The volatile organic compound emissions of these products may cause poor indoor (vehicle cabins included) air quality. This article takes formaldehyde as an example to study its diffusion in leather. The porous structure of leather was characterized by carrying out mercury intrusion porosimetry test. The formaldehyde diffusivities in leather was assessed by Blondeau et al.’s, Ataka et al.’s, and Xiong et al.’s models which represent parallel, equivalent, and series interconnection of pores, respectively, and validated through independent liquid inner tube diffusion film emission experiments. The results demonstrated that the fractal dimension of leather is 2.19, which indicated it is a porous medium with self-similar pore structure. Most of the pores in leather were macro pores with average diameter 16.56 μm which contributed to 95.9% of whole porosity and the meso pore with average diameter 0.60 μm which contributed to 4.1%. As far as the liquid inner tube diffusion film emission experiment shows, the Xiong model agrees much better with the experimental results than the other two. The two kinds of pores were considered to be serially connected. It is useful for predicting volatile organic compounds diffusion coefficient in a short time and can be applied to the design and development of low volatile organic compound emission leather or leather imitates within further research.


2010 ◽  
Vol 115 (1) ◽  
pp. 79-90 ◽  
Author(s):  
William L. Hergenrother ◽  
Chenchy J. Lin ◽  
Ashley S. Hilton ◽  
Terrence E. Hogan ◽  
Dennis R. Brumbaugh

2019 ◽  
Vol 45 ◽  
pp. 146867831988793
Author(s):  
Niloofar Atashi ◽  
Mohammad Hasan Peyrovi ◽  
Nastaran Parsafard

Platinum-carbonaceous catalysts were prepared by the wet impregnation method and tested for catalytic oxidation of toluene as a volatile organic compound. The textural properties of the constructed catalysts were considered by X-ray diffraction, X-ray fluorescence, inductively coupled plasma – optical emission spectroscopy, Fourier transform infrared, scanning electron microscope and N2 adsorption–desorption analysis. The catalytic assessments showed that the best activity (>99%) and high stability and selectivity to CO2 (>99%) are related to platinum-supported carbon nanotube. The curves of the conversion and selectivity demonstrate that the performance of catalysts to eliminate the volatile organic compound and turn it into CO2 conforms to the following descending order: platinum-supported carbon nanotube >platinum-supported graphene >platinum-supported activated carbon >platinum-supported carbon nanofibre. The kinetic of toluene oxidation has been evaluated as a function of toluene and oxygen partial pressures in different temperatures. Two kinetic models (Power Law and Mars–van Krevelen mechanisms) were applied to the reaction and compared with the experimental data. Mars–van Krevelen model is more appropriate than the Power Law model for this reaction as Mars–van Krevelen model showed better prediction of the behaviour of the reaction.


Indoor Air ◽  
2020 ◽  
Vol 30 (3) ◽  
pp. 459-472 ◽  
Author(s):  
Amber M. Yeoman ◽  
Marvin Shaw ◽  
Nicola Carslaw ◽  
Tim Murrells ◽  
Neil Passant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document