mercury intrusion
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 120)

H-INDEX

45
(FIVE YEARS 10)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 561
Author(s):  
Changkyu Kim ◽  
Woong Kwon ◽  
Moon Hee Lee ◽  
Jong Seok Woo ◽  
Euigyung Jeong

This study aimed to investigate the effect of impregnation pressure on the decrease in porosity of impregnated bulk graphite. The correlation between pitch impregnation behavior and the pore sizes of the bulk graphite block was studied to determine the optimal impregnation pressure. The densities and porosities of the bulk graphite before and after pitch impregnation under various pressures between 10 and 50 bar were evaluated based on the Archimedes method and a mercury porosimeter. The density increased rates increased by 1.93–2.44%, whereas the impregnation rate calculated from the rate of open porosity decreased by 15.15–24.48%. The density increase rate and impregnation rate were significantly high when the impregnation pressures were 40 and 50 bar. Compared with impregnation pressures of 10, 20, and 30 bar, the minimum impregnatable pore sizes with impregnation pressures of 40 and 50 bar were 30–39 and 24–31 nm, respectively. The mercury intrusion porosimeter analysis results demonstrated that the pressure-sensitive pore sizes of the graphite blocks were in the range of 100–4500 nm. Furthermore, the ink-bottle-type pores in this range contributed predominantly to the effect of impregnation under pressure, given that the pitch-impregnated-into-ink-bottle-type pores were difficult to elute during carbonization.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012003
Author(s):  
Hongyi Fu

Abstract The use of the mercury intrusion method has been one of the most relevant trends in determining the permeability of porous media in the past decades. In this paper, general knowledge of sandstone reservoir evaluation is delineated including the pore distribution of sandstones and air permeability measurement. Based upon the paradigmatic study conducted by Purcell, a schematic diagram illustrating apparatus used in mercury intrusion is shown and introduced, and the relevant procedure is also outlined. Four significant permeability prediction models are described respectively and compared based on researches focusing on tight rocks. By doing so, this article reveals that the performance of the models is different despite the painstaking analysis and the significance of these studies. The contribution of this present study is providing a general reference of permeability prediction by mercury intrusion method as well as its previous momentous studies, giving a comparison among the given models.


2021 ◽  
Vol 325 ◽  
pp. 162-167
Author(s):  
Jaroslava Zatloukalová ◽  
Jiří Pazderka ◽  
Petr Lukáš ◽  
Pavel Reiterman

Quantification of water transport properties of concrete is crucial for prediction of the material degradation processes. In case of 80 years ́ old concrete of fortification structures of former Czechoslovakia, its permeability is the determining factor of the scale of degradation. Mercury intrusion porosimetry was used to characterize the porous system of seven existing bunkers from the defence line ”Pražská čára” and to calculate the permeability using model of Bágel and Živica. Results showed the altered structure of the old concrete, characterized by no notable peaks, which mark the critical pore radius most responsible for water intake. The majority of pores are small micropores, which does not contribute much in the water transport. However, calculated permeability is high enough to be the cause of several degradation processes. The performed program also confirmed high variability of permeability properties between individual structures.


2021 ◽  
Vol 5 (4) ◽  
pp. 148
Author(s):  
Nanxi Dang ◽  
Jin Tao ◽  
Qiang Zeng ◽  
Weijian Zhao

High piezoresistivity of cement-based composites tuned by conductible fillers provides a feasible way to develop self-sensing smart structures and buildings. However, the microstructural mechanisms remain to be properly understood. In the present work, the piezoresistivity of cement mortar with different dosages of graphene nanoplatelets (GNPs) was investigated, and the microstructure was assessed by electron scanning microscopy (SEM) and mercury intrusion porosimetry (MIP). Two surface fractal models were introduced to interpret the MIP data to explore the multi-scale fractal structure of the GNP-modified cement mortars. Results show that the incorporation of GNPs into cement mortar can roughen the fracture surfaces due to the GNPs’ agglomeration. Gauge factor (GF) rises and falls as GNP content increases from 0% to 1% with the optimal piezoresistivity observed at GNP = 0.1% and 0.05%. The GF values of the optimum mortar are over 50 times higher than those of the reference mortar. Fractal dimensions in macro and micro fractal regions change with GNP content. Analysis shows that the fractal dimensions in micro region decrease first and then increase with the increase of GF values. GNPs not only impact the fractal structure of cement mortar, but also alter the tunneling and contact effects that govern the piezoresistivity of composite materials.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhiye Gao ◽  
Longfei Duan ◽  
Qinhong Hu ◽  
Shuling Xiong ◽  
Tongwei Zhang

With the rapid development of unconventional oil and gas, the pore structure characterization of shale reservoirs has attracted an increasing attention. High pressure mercury intrusion porosimetry (HPMIP) has been widely used to quantitatively characterize the pore structure of tight shales. However, the pore structure obtained from HPMIP could be significantly affected by the sample particle size used for the analyses. This study mainly investigates the influence of shale sample particle size on the pore structure obtained from HPMIP, using Mississippian-aged Barnett Shale samples. The results show that the porosity of Barnett Shale samples with different particle sizes obtained from HPMIP has an exponentially increasing relation with the particle size, which is mainly caused by the new pores or fractures created during shale crushing process as well as the increasing exposure of blind or closed pores. The amount and proportion of mercury retention during mercury extrusion process increase with the decrease of shale particle size, which is closely related to the increased ink-bottle effect in shale sample with smaller particle size. In addition, the fractal dimension of Barnett Shale is positively related to the particle size, which indicates that the heterogeneity of pore structure is stronger in shale sample with larger particle size. Furthermore, the skeletal density of shale sample increases with the decrease of particle size, which is possibly caused by the differentiation of mineral composition during shale crushing process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rui Shen ◽  
Xiaoyi Zhang ◽  
Yubin Ke ◽  
Wei Xiong ◽  
Hekun Guo ◽  
...  

AbstractSmall-angle neutron scattering and high-pressure mercury intrusion capillary pressure testing are integrated to analyze the pore size distribution of the broad sense shale oil reservoir samples of the Permian Lucaogou Formation in the Jimsar Sag, Junggar Basin, China. The results show that, compared with the measurement method integrating gas adsorption and mercury intrusion, combination of small-angle neutron scattering and mercury intrusion can more accurately characterize full-scale pore size distribution. The full-scale pore size distribution curve of the rock samples in the study area includes two types: the declining type and submicron pore-dominated type. The declining type is mainly found with silty mudstone and dolomitic mudstone, and most of its pores are smaller than 80 nm. Silt-fine sandstones and dolarenite are mostly of the submicron pores-dominated type, with most pores smaller than 500 nm. They also present large specific pore volumes and average pore diameters of macropores and are the favorable lithogenous facies for development of high-quality reservoirs.


Sign in / Sign up

Export Citation Format

Share Document